Python cv2.FONT_HERSHEY_PLAIN Examples
The following are 30
code examples of cv2.FONT_HERSHEY_PLAIN().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: CThermal.py From Thermal_Image_Analysis with MIT License | 6 votes |
def generate_colorbar(self, min_temp=None, max_temp=None, cmap=cv.COLORMAP_JET, height=None): if min_temp is None: min_temp = self.global_min_temp if max_temp is None: max_temp = self.global_max_temp cb_gray = np.arange(255,0,-1,dtype=np.uint8).reshape((255,1)) if cmap is not None: cb_color = cv.applyColorMap(cb_gray, cmap) else: cb_color = cv.cvtColor(cb_gray, cv.COLOR_GRAY2BGR) for i in range(1,6): cb_color = np.concatenate( (cb_color, cb_color), axis=1 ) if height is None: append_img = np.zeros( (self.thermal_image.shape[0], cb_color.shape[1]+30, 3), dtype=np.uint8 ) else: append_img = np.zeros( (height, cb_color.shape[1]+30, 3), dtype=np.uint8 ) append_img[append_img.shape[0]//2-cb_color.shape[0]//2 : append_img.shape[0]//2 - (cb_color.shape[0]//2) + cb_color.shape[0] , 10 : 10 + cb_color.shape[1] ] = cb_color cv.putText(append_img, str(min_temp), (5, append_img.shape[0]//2 - (cb_color.shape[0]//2) + cb_color.shape[0] + 30), cv.FONT_HERSHEY_PLAIN, 1, (255,0,0) , 1, 8) cv.putText(append_img, str(max_temp), (5, append_img.shape[0]//2-cb_color.shape[0]//2-20) , cv.FONT_HERSHEY_PLAIN, 1, (0,0,255) , 1, 8 ) return append_img
Example #2
Source File: net_utils.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def vis_det_and_mask(im, class_name, dets, masks, thresh=0.8): """Visual debugging of detections.""" num_dets = np.minimum(10, dets.shape[0]) colors_mask = random_colors(num_dets) colors_bbox = np.round(np.random.rand(num_dets, 3) * 255) # sort rois according to the coordinates, draw upper bbox first draw_mask = np.zeros(im.shape[:2], dtype=np.uint8) for i in range(1): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) mask = masks[i, :, :] full_mask = unmold_mask(mask, bbox, im.shape) score = dets[i, -1] if score > thresh: word_width = len(class_name) cv2.rectangle(im, bbox[0:2], bbox[2:4], colors_bbox[i], 2) cv2.rectangle(im, bbox[0:2], (bbox[0] + 18 + word_width*8, bbox[1]+15), colors_bbox[i], thickness=cv2.FILLED) apply_mask(im, full_mask, draw_mask, colors_mask[i], 0.5) draw_mask += full_mask cv2.putText(im, '%s' % (class_name), (bbox[0]+5, bbox[1] + 12), cv2.FONT_HERSHEY_PLAIN, 1.0, (255,255,255), thickness=1) return im
Example #3
Source File: detect.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def write(x, batches, results): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1) return img
Example #4
Source File: video_demo_ori.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def write(x, img): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img
Example #5
Source File: image_viewer.py From deep_sort with GNU General Public License v3.0 | 6 votes |
def rectangle(self, x, y, w, h, label=None): """Draw a rectangle. Parameters ---------- x : float | int Top left corner of the rectangle (x-axis). y : float | int Top let corner of the rectangle (y-axis). w : float | int Width of the rectangle. h : float | int Height of the rectangle. label : Optional[str] A text label that is placed at the top left corner of the rectangle. """ pt1 = int(x), int(y) pt2 = int(x + w), int(y + h) cv2.rectangle(self.image, pt1, pt2, self._color, self.thickness) if label is not None: text_size = cv2.getTextSize( label, cv2.FONT_HERSHEY_PLAIN, 1, self.thickness) center = pt1[0] + 5, pt1[1] + 5 + text_size[0][1] pt2 = pt1[0] + 10 + text_size[0][0], pt1[1] + 10 + \ text_size[0][1] cv2.rectangle(self.image, pt1, pt2, self._color, -1) cv2.putText(self.image, label, center, cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), self.thickness)
Example #6
Source File: util.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def draw_bboxes(img, bbox, identities=None, distance=None, speed = None, offset=(0,0)): for i,box in enumerate(bbox): x1,y1,x2,y2 = [int(i) for i in box] x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar id = int(identities[i]) if identities is not None else 0 dist = distance[i] sp = speed[i] color = COLORS_10[id%len(COLORS_10)] #label = '{}{}'.format("id", id) label = '{}'.format(id) label_dist = 'dist: {:.2f}'.format(dist) label_sp = 'speed: {:.2f}/s'.format(sp) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] dist_size = cv2.getTextSize(label_dist, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] sp_size = cv2.getTextSize(label_sp, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] cv2.rectangle(img,(x1, y1),(x2,y2),color,3) cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 1) cv2.putText(img, label_dist, (x1, y1-4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) cv2.putText(img, label_sp, (x1, y1-4-dist_size[1]-4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) return img #########################################################################################################
Example #7
Source File: util.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def draw_bbox(img, box, cls_name, identity=None, offset=(0,0)): ''' draw box of an id ''' x1,y1,x2,y2 = [int(i+offset[idx%2]) for idx,i in enumerate(box)] # set color and label text color = COLORS_10[identity%len(COLORS_10)] if identity is not None else COLORS_10[0] label = '{} {}'.format(cls_name, identity) # box text and bar t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] cv2.rectangle(img,(x1, y1),(x2,y2),color,2) cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 1, [255,255,255], 1) return img # def draw_bboxes(img, bbox, identities=None, offset=(0,0)): # for i,box in enumerate(bbox): # x1,y1,x2,y2 = [int(i) for i in box] # x1 += offset[0] # x2 += offset[0] # y1 += offset[1] # y2 += offset[1] # # box text and bar # id = int(identities[i]) if identities is not None else 0 # color = COLORS_10[id%len(COLORS_10)] # #label = '{}{}'.format("id", id) # label = '{}'.format(id) # t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] # cv2.rectangle(img,(x1, y1),(x2,y2),color,3) # cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) # cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 1) # return img #######################################################################################################
Example #8
Source File: bbox.py From SlowFast-Network-pytorch with MIT License | 6 votes |
def write(x, batches, results, colors, classes): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img
Example #9
Source File: rec-feat.py From Facial-Recognition-using-Facenet with MIT License | 6 votes |
def extract_face_info(img, img_rgb, database,ear): faces = detector(img_rgb) x, y, w, h = 0, 0, 0, 0 if len(faces) > 0: for face in faces: (x, y, w, h) = face_utils.rect_to_bb(face) cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 2) image = img[y:y + h, x:x + w] name, min_dist = recognize_face(image, database) if ear > thresh: if min_dist < 0.1: cv2.putText(img, "Face : " + name, (x, y - 50), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2) cv2.putText(img, "Dist : " + str(min_dist), (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2) else: cv2.putText(img, 'No matching faces', (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 255), 2) else: cv2.putText(img, 'Eyes Closed', (x, y - 20), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 0, 255), 2)
Example #10
Source File: net_utils.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" for i in range(np.minimum(10, dets.shape[0])): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) score = dets[i, -1] if score > thresh: cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) return im # Borrow from matterport mask R-CNN implementation
Example #11
Source File: common.py From OpenCV-Python-Tutorial with MIT License | 6 votes |
def draw_str(dst, target, s): x, y = target cv2.putText(dst, s, (x+1, y+1), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness = 2, lineType=cv2.LINE_AA) cv2.putText(dst, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv2.LINE_AA)
Example #12
Source File: util.py From centerpose with MIT License | 6 votes |
def draw_bboxes(img, bbox, identities=None, offset=(0,0)): for i,box in enumerate(bbox): x1,y1,x2,y2 = [int(i) for i in box] x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar id = int(identities[i]) if identities is not None else 0 color = COLORS_10[id%len(COLORS_10)] label = '{} {}'.format("object", id) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] cv2.rectangle(img,(x1, y1),(x2,y2),color,3) cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2) return img
Example #13
Source File: net_utils.py From fpn.pytorch with MIT License | 6 votes |
def vis_det_and_mask(im, class_name, dets, masks, thresh=0.8): """Visual debugging of detections.""" num_dets = np.minimum(10, dets.shape[0]) colors_mask = random_colors(num_dets) colors_bbox = np.round(np.random.rand(num_dets, 3) * 255) # sort rois according to the coordinates, draw upper bbox first draw_mask = np.zeros(im.shape[:2], dtype=np.uint8) for i in range(1): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) mask = masks[i, :, :] full_mask = unmold_mask(mask, bbox, im.shape) score = dets[i, -1] if score > thresh: word_width = len(class_name) cv2.rectangle(im, bbox[0:2], bbox[2:4], colors_bbox[i], 2) cv2.rectangle(im, bbox[0:2], (bbox[0] + 18 + word_width*8, bbox[1]+15), colors_bbox[i], thickness=cv2.FILLED) apply_mask(im, full_mask, draw_mask, colors_mask[i], 0.5) draw_mask += full_mask cv2.putText(im, '%s' % (class_name), (bbox[0]+5, bbox[1] + 12), cv2.FONT_HERSHEY_PLAIN, 1.0, (255,255,255), thickness=1) return im
Example #14
Source File: data.py From Sorting_Visualization with MIT License | 6 votes |
def Visualize(self, mark1=None, mark2=None): img = self.figure.copy() if mark2: self.Mark( img, mark2, self.YELLOW) if mark1: self.Mark( img, mark1, self.RED) img = cv2.resize(img, (self.im_size, self.im_size)) self.GetTime() cv2.putText(img, self.sort_title+" Time:%02.2fs"%self.time, (20,20), cv2.FONT_HERSHEY_PLAIN, 1, self.YELLOW, 1) if self.record: self.vdo_wtr.write(img) cv2.imshow(self.sort_title, img) if self.sound and mark1: self.PlaySound(mark1) pass cv2.waitKey(self.time_interval)
Example #15
Source File: net_utils.py From FPN_Pytorch with MIT License | 6 votes |
def vis_det_and_mask(im, class_name, dets, masks, thresh=0.8): """Visual debugging of detections.""" num_dets = np.minimum(10, dets.shape[0]) colors_mask = random_colors(num_dets) colors_bbox = np.round(np.random.rand(num_dets, 3) * 255) # sort rois according to the coordinates, draw upper bbox first draw_mask = np.zeros(im.shape[:2], dtype=np.uint8) for i in range(1): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) mask = masks[i, :, :] full_mask = unmold_mask(mask, bbox, im.shape) score = dets[i, -1] if score > thresh: word_width = len(class_name) cv2.rectangle(im, bbox[0:2], bbox[2:4], colors_bbox[i], 2) cv2.rectangle(im, bbox[0:2], (bbox[0] + 18 + word_width*8, bbox[1]+15), colors_bbox[i], thickness=cv2.FILLED) apply_mask(im, full_mask, draw_mask, colors_mask[i], 0.5) draw_mask += full_mask cv2.putText(im, '%s' % (class_name), (bbox[0]+5, bbox[1] + 12), cv2.FONT_HERSHEY_PLAIN, 1.0, (255,255,255), thickness=1) return im
Example #16
Source File: detect.py From pyCAIR with GNU General Public License v3.0 | 6 votes |
def write(x, batches, results): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1) cv2.imshow("res", img) cv2.waitKey(0) #cv2.imwrite("",cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) return img
Example #17
Source File: visualization.py From MOTDT with MIT License | 6 votes |
def plot_detections(image, tlbrs, scores=None, color=(255, 0, 0), ids=None): im = np.copy(image) text_scale = max(1, image.shape[1] / 800.) thickness = 2 if text_scale > 1.3 else 1 for i, det in enumerate(tlbrs): x1, y1, x2, y2 = np.asarray(det[:4], dtype=np.int) if len(det) >= 7: label = 'det' if det[5] > 0 else 'trk' if ids is not None: text = '{}# {:.2f}: {:d}'.format(label, det[6], ids[i]) cv2.putText(im, text, (x1, y1 + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 255), thickness=thickness) else: text = '{}# {:.2f}'.format(label, det[6]) if scores is not None: text = '{:.2f}'.format(scores[i]) cv2.putText(im, text, (x1, y1 + 30), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 255), thickness=thickness) cv2.rectangle(im, (x1, y1), (x2, y2), color, 2) return im
Example #18
Source File: net_utils.py From Distilling-Object-Detectors with MIT License | 6 votes |
def vis_detections(im, class_name, dets, thresh=0.8): """Visual debugging of detections.""" for i in range(np.minimum(10, dets.shape[0])): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) score = dets[i, -1] if score > thresh: ##modify to use my draw box #previous draw box # cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) # cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, # 3.0, (0, 0, 255), thickness=1) draw_box(im, bbox, label=class_name, conf=score) # im2show = cv2.resize(im, (960, 540)) # cv2.imshow('test', im2show) # cv2.waitKey(0) return im
Example #19
Source File: net_utils.py From Distilling-Object-Detectors with MIT License | 6 votes |
def clip_gradient(model, clip_norm): """Computes a gradient clipping coefficient based on gradient norm.""" totalnorm = 0 clip_norm = torch.tensor([clip_norm], device='cuda') for p in model.parameters(): if p.requires_grad: modulenorm = p.grad.data.norm() totalnorm += modulenorm ** 2 totalnorm = np.sqrt(totalnorm).cuda() norm = clip_norm / max(totalnorm, clip_norm) for p in model.parameters(): if p.requires_grad: p.grad.mul_(norm) # # def vis_detections(im, class_name, dets, thresh=0.8): # """Visual debugging of detections.""" # for i in range(np.minimum(10, dets.shape[0])): # bbox = tuple(int(np.round(x)) for x in dets[i, :4]) # score = dets[i, -1] # if score > thresh: # cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) # cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, # 1.0, (0, 0, 255), thickness=1) # return im
Example #20
Source File: rtsp_threaded_tracker.py From deep_sort_pytorch with MIT License | 6 votes |
def draw_boxes(img, output, offset=(0, 0)): for i, box in enumerate(output): x1, y1, x2, y2, identity = [int(ii) for ii in box] x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar color = compute_color_for_labels(identity) label = '{}{:d}'.format("", identity) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] cv2.rectangle(img, (x1, y1), (x2, y2), color, 3) cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1) cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) return img
Example #21
Source File: draw.py From deep_sort_pytorch with MIT License | 6 votes |
def draw_boxes(img, bbox, identities=None, offset=(0,0)): for i,box in enumerate(bbox): x1,y1,x2,y2 = [int(i) for i in box] x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar id = int(identities[i]) if identities is not None else 0 color = compute_color_for_labels(id) label = '{}{:d}'.format("", id) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2 , 2)[0] cv2.rectangle(img,(x1, y1),(x2,y2),color,3) cv2.rectangle(img,(x1, y1),(x1+t_size[0]+3,y1+t_size[1]+4), color,-1) cv2.putText(img,label,(x1,y1+t_size[1]+4), cv2.FONT_HERSHEY_PLAIN, 2, [255,255,255], 2) return img
Example #22
Source File: ped_det_server.py From deep_sort_pytorch with MIT License | 6 votes |
def draw_boxes(self, img, frame_id, output, offset=(0, 0)): for i, box in enumerate(output): x1, y1, x2, y2, identity = [int(ii) for ii in box] self.logger.add_bbox_to_frame(frame_id=frame_id, bbox_id=identity, top=y1, left=x1, width=x2 - x1, height=y2 - y1) x1 += offset[0] x2 += offset[0] y1 += offset[1] y2 += offset[1] # box text and bar self.logger.add_label_to_bbox(frame_id=frame_id, bbox_id=identity, category='pedestrian', confidence=0.9) color = compute_color_for_labels(identity) label = '{}{:d}'.format("", identity) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] cv2.rectangle(img, (x1, y1), (x2, y2), color, 3) cv2.rectangle(img, (x1, y1), (x1 + t_size[0] + 3, y1 + t_size[1] + 4), color, -1) cv2.putText(img, label, (x1, y1 + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) return img
Example #23
Source File: utils.py From zmMagik with GNU General Public License v2.0 | 6 votes |
def write_text(frame=None, text=None, x=None,y=None, W=None, H=None, adjust=False): (tw, th) = cv2.getTextSize(text, cv2.FONT_HERSHEY_PLAIN, fontScale=g.args['fontscale'], thickness=2)[0] loc_x1 = x loc_y1 = y - th - 4 loc_x2 = x + tw + 4 loc_y2 = y if adjust: if not W or not H: fail_print('cannot auto adjust text as W/H not provided') else: if loc_x1 + tw > W: loc_x1 = max (0, loc_x1 - (loc_x1+tw - W)) if loc_y1 + th > H: loc_y1 = max (0, loc_y1 - (loc_y1+th - H)) cv2.rectangle(frame, (loc_x1, loc_y1), (loc_x1+tw+4,loc_y1+th+4), (0,0,0), cv2.FILLED) cv2.putText(frame, text, (loc_x1+2, loc_y2-2), cv2.FONT_HERSHEY_PLAIN, fontScale=g.args['fontscale'], color=(255,255,255), thickness=1) return loc_x1, loc_y1, loc_x1+tw+4,loc_y1+th+4
Example #24
Source File: __init__.py From ImageAI with MIT License | 6 votes |
def draw_boxes_and_caption(self, image_frame, v_boxes, v_labels, v_scores, show_names=False, show_percentage=False): for i in range(len(v_boxes)): box = v_boxes[i] y1, x1, y2, x2 = box.ymin, box.xmin, box.ymax, box.xmax width, height = x2 - x1, y2 - y1 class_color = self.label_color(self.__labels.index(v_labels[i])) image_frame = cv2.rectangle(image_frame, (x1, y1), (x2, y2), class_color, 2) label = "" if show_names and show_percentage: label = "%s : %.3f" % (v_labels[i], v_scores[i]) elif show_names: label = "%s" % (v_labels[i]) elif show_percentage: label = "%.3f" % (v_scores[i]) if show_names or show_percentage: b = np.array([x1, y1, x2, y2]).astype(int) cv2.putText(image_frame, label, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (200, 0, 0), 3) cv2.putText(image_frame, label, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 2) return image_frame
Example #25
Source File: net_utils.py From 3d-vehicle-tracking with BSD 3-Clause "New" or "Revised" License | 6 votes |
def vis_detections(im, class_name, dets, gt_box, gt_center, num_box, thresh=0.8): """Visual debugging of detections.""" for i in range(np.minimum(300, dets.shape[0])): bbox = tuple(int(np.round(x)) for x in dets[i, :6]) score = dets[i, -1] if score > thresh: cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) cv2.circle(im, (bbox[4], bbox[5]), 4, (0, 204, 0), -1) cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) # gt_box = gt_box[0] # gt_center = gt_center[0] # for i in range(num_box[0]): # gtbox = tuple(int(np.round(x)) for x in gt_box[i, :4]) # gtcenter = tuple(x for x in gt_center[i, :2]) # cv2.rectangle(im, gtbox[0:2], gtbox[2:4], (0, 0, 204), 2) # cv2.circle(im, (gtcenter[0], gtcenter[1]), 4, (0, 0, 204), -1) return im
Example #26
Source File: display.py From tensorrt_demos with MIT License | 5 votes |
def show_help_text(img, help_text): """Draw help text on image.""" cv2.putText(img, help_text, (11, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (32, 32, 32), 4, cv2.LINE_AA) cv2.putText(img, help_text, (10, 20), cv2.FONT_HERSHEY_PLAIN, 1.0, (240, 240, 240), 1, cv2.LINE_AA) return img
Example #27
Source File: bbox_plot.py From second.pytorch with MIT License | 5 votes |
def cv2_draw_bbox_with_label(img, bboxes, colors, labels=None, label_colors=None, thickness=1, line_type=cv2.LINE_8, font_line_type=cv2.LINE_8): # assume bboxes has right format. bboxes = bboxes.astype(np.int32) if label_colors is None: label_colors = colors if labels is None: labels = [None] * bboxes.shape[0] font = cv2.FONT_ITALIC font = cv2.FONT_HERSHEY_DUPLEX font = cv2.FONT_HERSHEY_PLAIN font = cv2.FONT_HERSHEY_SIMPLEX for bbox, color, label, label_color in zip(bboxes, colors, labels, label_colors): color = tuple(int(c) for c in color) label_color = tuple(int(c) for c in label_color) cv2.rectangle(img, tuple(bbox[:2]), tuple(bbox[2:]), color, thickness, line_type) if label is not None: cv2.putText(img, label, tuple(bbox[:2]), font, 1, label_color, thickness, font_line_type, False) return img
Example #28
Source File: visualization.py From kaggle-rsna18 with MIT License | 5 votes |
def draw_caption(image, box, caption): """ Draws a caption above the box in an image. # Arguments image : The image to draw on. box : A list of 4 elements (x1, y1, x2, y2). caption : String containing the text to draw. """ b = np.array(box).astype(int) cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (0, 0, 0), 2) cv2.putText(image, caption, (b[0], b[1] - 10), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1)
Example #29
Source File: detector.py From VideoSearchEngine with MIT License | 5 votes |
def write(x, results, color): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) img = results[int(x[0])] cls = int(x[-1]) label = "{0}".format(classes[cls]) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img
Example #30
Source File: video_demo.py From pyCAIR with GNU General Public License v3.0 | 5 votes |
def write(x, img): c1 = tuple(x[1:3].int()) c2 = tuple(x[3:5].int()) cls = int(x[-1]) label = "{0}".format(classes[cls]) color = random.choice(colors) cv2.rectangle(img, c1, c2,color, 1) t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0] c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4 cv2.rectangle(img, c1, c2,color, -1) cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1); return img