Python cv2.imwrite() Examples
The following are 30
code examples of cv2.imwrite().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: BlurDetection.py From python-- with GNU General Public License v3.0 | 10 votes |
def _lapulaseDetection(self, imgName): """ :param strdir: 文件所在的目录 :param name: 文件名称 :return: 检测模糊后的分数 """ # step1: 预处理 img2gray, reImg = self.preImgOps(imgName) # step2: laplacian算子 获取评分 resLap = cv2.Laplacian(img2gray, cv2.CV_64F) score = resLap.var() print("Laplacian %s score of given image is %s", str(score)) # strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_lapulaseDetection_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName # 显示 cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) # step3: 返回分数 return score
Example #2
Source File: utils.py From DOTA_models with Apache License 2.0 | 9 votes |
def saveimageWithMask(img, outname, mask_poly): dstimg = copy.deepcopy(img) for mask in mask_poly: bound = mask.bounds if (len(bound) < 4): continue xmin, ymin, xmax, ymax = bound[0], bound[1], bound[2], bound[3] for x in range(int(xmin), int(xmax)): for y in range(int(ymin), int(ymax)): point = shgeo.Point(x, y) if point.within(mask): #print('withing') dstimg[int(y)][int(x)] = 0 cv2.imwrite(outname, dstimg)
Example #3
Source File: histcomparison.py From pedestrian-haar-based-detector with GNU General Public License v2.0 | 8 votes |
def main(): imagePath = "img.jpg" img = cv2.imread(imagePath) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) generate_histogram(gray) cv2.imwrite("before.jpg", gray) gray = cv2.equalizeHist(gray) generate_histogram(gray) cv2.imwrite("after.jpg",gray) return 0
Example #4
Source File: datasets.py From pruning_yolov3 with GNU General Public License v3.0 | 8 votes |
def convert_images2bmp(): # cv2.imread() jpg at 230 img/s, *.bmp at 400 img/s for path in ['../coco/images/val2014/', '../coco/images/train2014/']: folder = os.sep + Path(path).name output = path.replace(folder, folder + 'bmp') if os.path.exists(output): shutil.rmtree(output) # delete output folder os.makedirs(output) # make new output folder for f in tqdm(glob.glob('%s*.jpg' % path)): save_name = f.replace('.jpg', '.bmp').replace(folder, folder + 'bmp') cv2.imwrite(save_name, cv2.imread(f)) for label_path in ['../coco/trainvalno5k.txt', '../coco/5k.txt']: with open(label_path, 'r') as file: lines = file.read() lines = lines.replace('2014/', '2014bmp/').replace('.jpg', '.bmp').replace( '/Users/glennjocher/PycharmProjects/', '../') with open(label_path.replace('5k', '5k_bmp'), 'w') as file: file.write(lines)
Example #5
Source File: detect.py From pedestrian-haar-based-detector with GNU General Public License v2.0 | 7 votes |
def main(): #IMG PATHS imagePath = "test3.jpg" cascPath = "cascades/haarcascade_pedestrian.xml" pplCascade = cv2.CascadeClassifier(cascPath) image = cv2.imread(imagePath) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = normalize_grayimage(gray) pedestrians = pplCascade.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=10, minSize=(32,96), flags = cv2.cv.CV_HAAR_SCALE_IMAGE ) print "Found {0} ppl!".format(len(pedestrians)) #Draw a rectangle around the detected objects for (x, y, w, h) in pedestrians: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) cv2.imwrite("saida.jpg", image) cv2.imshow("Ppl found", image) cv2.waitKey(0) return 0
Example #6
Source File: edge_smooth.py From CartoonGAN-Tensorflow with MIT License | 6 votes |
def make_edge_smooth(dataset_name, img_size) : check_folder('./dataset/{}/{}'.format(dataset_name, 'trainB_smooth')) file_list = glob('./dataset/{}/{}/*.*'.format(dataset_name, 'trainB')) save_dir = './dataset/{}/trainB_smooth'.format(dataset_name) kernel_size = 5 kernel = np.ones((kernel_size, kernel_size), np.uint8) gauss = cv2.getGaussianKernel(kernel_size, 0) gauss = gauss * gauss.transpose(1, 0) for f in tqdm(file_list) : file_name = os.path.basename(f) bgr_img = cv2.imread(f) gray_img = cv2.imread(f, 0) bgr_img = cv2.resize(bgr_img, (img_size, img_size)) pad_img = np.pad(bgr_img, ((2, 2), (2, 2), (0, 0)), mode='reflect') gray_img = cv2.resize(gray_img, (img_size, img_size)) edges = cv2.Canny(gray_img, 100, 200) dilation = cv2.dilate(edges, kernel) gauss_img = np.copy(bgr_img) idx = np.where(dilation != 0) for i in range(np.sum(dilation != 0)): gauss_img[idx[0][i], idx[1][i], 0] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 0], gauss)) gauss_img[idx[0][i], idx[1][i], 1] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 1], gauss)) gauss_img[idx[0][i], idx[1][i], 2] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 2], gauss)) cv2.imwrite(os.path.join(save_dir, file_name), gauss_img)
Example #7
Source File: main.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def draw(): filenames = [os.path.splitext(f)[0] for f in glob.glob("for_task3/*.txt")] txt_files = [s + ".txt" for s in filenames] for txt in txt_files: image = cv2.imread('test_original/'+ txt.split('/')[1].split('.')[0]+'.jpg', cv2.IMREAD_COLOR) with open(txt, 'r') as txt_file: for line in csv.reader(txt_file): box = [int(string, 10) for string in line[0:8]] if len(line) < 9: print(txt) cv2.rectangle(image, (box[0], box[1]), (box[4], box[5]), (0,255,0), 2) font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(image, line[8].upper(), (box[0],box[1]), font, 0.5, (0, 0, 255), 1, cv2.LINE_AA) cv2.imwrite('task2_result_draw/'+ txt.split('/')[1].split('.')[0]+'.jpg', image)
Example #8
Source File: BlurDetection.py From python-- with GNU General Public License v3.0 | 6 votes |
def _Variance(self, imgName): """ 灰度方差乘积 :param imgName: :return: """ # step 1 图像的预处理 img2gray, reImg = self.preImgOps(imgName) f = self._imageToMatrix(img2gray) # strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 score = np.var(f) newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_Variance_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) return score
Example #9
Source File: BlurDetection.py From python-- with GNU General Public License v3.0 | 6 votes |
def _SMD2Detection(self, imgName): """ 灰度方差乘积 :param imgName: :return: """ # step 1 图像的预处理 img2gray, reImg = self.preImgOps(imgName) f=self._imageToMatrix(img2gray)/255.0 x, y = f.shape score = 0 for i in range(x - 1): for j in range(y - 1): score += np.abs(f[i+1,j]-f[i,j])*np.abs(f[i,j]-f[i,j+1]) # strp3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 score=score newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_SMD2Detection_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) return score
Example #10
Source File: BlurDetection.py From python-- with GNU General Public License v3.0 | 6 votes |
def _blurDetection(self, imgName): # step 1 图像的预处理 img2gray, reImg = self.preImgOps(imgName) imgMat=self._imageToMatrix(img2gray)/255.0 x, y = imgMat.shape score = 0 for i in range(x - 2): for j in range(y - 2): score += (imgMat[i + 2, j] - imgMat[i, j]) ** 2 # step3: 绘制图片并保存 不应该写在这里 抽象出来 这是共有的部分 score=score/10 newImg = self._drawImgFonts(reImg, str(score)) newDir = self.strDir + "/_blurDetection_/" if not os.path.exists(newDir): os.makedirs(newDir) newPath = newDir + imgName cv2.imwrite(newPath, newImg) # 保存图片 cv2.imshow(imgName, newImg) cv2.waitKey(0) return score
Example #11
Source File: det_visualizer.py From tf2-yolo3 with Apache License 2.0 | 6 votes |
def on_epoch_end(self, epoch, logs=None): if self.tiny: anchors = yolo_tiny_anchors masks = yolo_tiny_anchor_masks else: anchors = yolo_anchors masks = yolo_anchor_masks model = make_eval_model_from_trained_model(self.model, anchors, masks) epoch_dir = os.path.join(self.result_dir, str(epoch)) os.makedirs(epoch_dir) for batch, (images, labels) in enumerate(self.dataset): images = images.numpy() for i in range(images.shape[0]): boxes, scores, classes = model.predict(images[i:i + 1, ...]) img_for_this = (images[i, ...] * 255).astype(np.uint8) boxes_for_this, scores_for_this, classes_for_this = boxes[0, ...], scores[0, ...], classes[0, ...] img_for_this = draw_outputs(img_for_this, (boxes_for_this, scores_for_this, classes_for_this)) cv2.imwrite(os.path.join(epoch_dir, '{0}.jpg'.format(uuid.uuid4())), img_for_this) if batch == self.num_batches: break
Example #12
Source File: vaegan_mxnet.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def visual(title, X, activation): '''create a grid of images and save it as a final image title : grid image name X : array of images ''' assert len(X.shape) == 4 X = X.transpose((0, 2, 3, 1)) if activation == 'sigmoid': X = np.clip((X)*(255.0), 0, 255).astype(np.uint8) elif activation == 'tanh': X = np.clip((X+1.0)*(255.0/2.0), 0, 255).astype(np.uint8) n = np.ceil(np.sqrt(X.shape[0])) buff = np.zeros((int(n*X.shape[1]), int(n*X.shape[2]), int(X.shape[3])), dtype=np.uint8) for i, img in enumerate(X): fill_buf(buff, i, img, X.shape[1:3]) cv2.imwrite('%s.jpg' % (title), buff)
Example #13
Source File: test.py From Pytorch-Networks with MIT License | 6 votes |
def test(test_loader, model, logger=None, Writer=None): model.eval() with torch.no_grad(): for its, (img_line, img_noise) in enumerate(test_loader): img_line = img_line.cuda() if torch.cuda.is_available() else img_line img_noise = img_noise.cuda() if torch.cuda.is_available() else img_noise g_results = model(torch.cat((img_line, img_noise), 1)) for i in range(img_line.shape[0]): img_line_test = img_line[i].cpu().numpy().transpose((1,2,0)) * 255 img_line_test = img_line_test.squeeze() cv2.imwrite((cfg.PATH.RES_TEST+"line_{}.jpg".format(i+its)), img_line_test) img_res_test = g_results[i].cpu().numpy().transpose((1,2,0)) * 255 cv2.imwrite((cfg.PATH.RES_TEST+"res_{}.jpg".format(i+its)), img_res_test) print("{}/{}".format(i+its,its_num))
Example #14
Source File: boxing.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def draw(): f = open(box_path + 'jpglist.txt') # read each image and its label line = f.readline() line_num =0 while line: line_num=line_num+1 print('Image:', line_num) name = line.strip('\n') img = cv2.imread(image_path + name) img_size = img.shape img_size = img_size[0]*img_size[1] # read each coordinate and draw box f_txt = open(image_path + name.strip('.jpg') + '.txt') #line_txt = f_txt.readline() # pass the first ROI information line_txt = f_txt.readline() while line_txt: coor = line_txt.split(',') x1 = int(coor[0].strip('\'')) y1 = int(coor[1].strip('\'')) x3 = int(coor[4].strip('\'')) y3 = int(coor[5].strip('\'')) text = coor[8].strip('\n').strip('\'') text_show = text + '(' + str(x1) + ',' + str(y1) +')' cv2.rectangle(img, (x1, y1), (x3, y3), (255, 0, 0), 1) #cv2.putText(img, text_show, (x1, y1 - 1), # cv2.FONT_HERSHEY_TRIPLEX, 0.35, (0, 0, 255), 1) line_txt = f_txt.readline() cv2.imwrite(box_path + name, img) line = f.readline() # img = cv2.imshow('image', img) # cv2.waitKey(0)
Example #15
Source File: utils.py From pruning_yolov3 with GNU General Public License v3.0 | 6 votes |
def crop_images_random(path='../images/', scale=0.50): # from utils.utils import *; crop_images_random() # crops images into random squares up to scale fraction # WARNING: overwrites images! for file in tqdm(sorted(glob.glob('%s/*.*' % path))): img = cv2.imread(file) # BGR if img is not None: h, w = img.shape[:2] # create random mask a = 30 # minimum size (pixels) mask_h = random.randint(a, int(max(a, h * scale))) # mask height mask_w = mask_h # mask width # box xmin = max(0, random.randint(0, w) - mask_w // 2) ymin = max(0, random.randint(0, h) - mask_h // 2) xmax = min(w, xmin + mask_w) ymax = min(h, ymin + mask_h) # apply random color mask cv2.imwrite(file, img[ymin:ymax, xmin:xmax])
Example #16
Source File: captcha_generator.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument("font_path", help="Path to ttf font file") parser.add_argument("output", help="Output filename including extension (e.g. 'sample.jpg')") parser.add_argument("--num", help="Up to 4 digit number [Default: random]") args = parser.parse_args() captcha = ImageCaptcha(fonts=[args.font_path]) captcha_str = args.num if args.num else DigitCaptcha.get_rand(3, 4) img = captcha.generate(captcha_str) img = np.fromstring(img.getvalue(), dtype='uint8') img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) cv2.imwrite(args.output, img) print("Captcha image with digits {} written to {}".format([int(c) for c in captcha_str], args.output))
Example #17
Source File: image_process.py From Advanced_Lane_Lines with MIT License | 6 votes |
def test_yellow_white_thresh_images(src, dst, y_low=(10,50,0), y_high=(30,255,255), w_low=(180,180,180), w_high=(255,255,255)): """ apply the thresh to images in a src folder and output to dst foler """ image_files = glob.glob(src+"*.jpg") for idx, file in enumerate(image_files): print(file) img = mpimg.imread(file) image_threshed = yellow_white_thresh(img, y_low, y_high, w_low, w_high) file_name = file.split("\\")[-1] print(file_name) out_image = dst+file_name print(out_image) # convert binary to RGB, *255, to visiual, 1 will not visual after write to file image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB) # HSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) # V = HSV[:,:,2] # brightness = np.mean(V) # info_str = "brightness is: {}".format(int(brightness)) # cv2.putText(image_threshed, info_str, (50,700), cv2.FONT_HERSHEY_SIMPLEX,2,(0,255,255),2) cv2.imwrite(out_image, image_threshed)
Example #18
Source File: Main.py From bjtu_BinocularCameraRecord with MIT License | 6 votes |
def loop2(self,text,w=1280,h=720): cap = cv2.VideoCapture(int(text)) cap.set(6 ,cv2.VideoWriter_fourcc('M', 'J', 'P', 'G') ); global capnum2 capnum2 = int(text) cap.set(3,w); cap.set(4,h); global update2 update2 = 1 global shotmark2 while (update2 == 1): ret, frame = cap.read() if shotmark2 == 1: fn = self.lineEdit.text() name = "photo/2_"+fn + "video.jpg" if os.path.exists(name): name = "photo/2_" + fn + "video"+str(int(time.time()))+".jpg" cv2.imwrite(name, frame) shotmark2 = 0 frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) self.original2_image.updateImage(frame) # cap.release() cv_img_rgb = np.zeros((700,700,3)) self.original2_image.updateImage(cv_img_rgb)
Example #19
Source File: util.py From exposure with MIT License | 6 votes |
def degrade_images_in_folder( folder, dst_folder_suffix, LIGHTDOWN=True, UNBALANCECOLOR=True,): import os js = os.listdir(folder) dst_folder = folder + '-' + dst_folder_suffix try: os.mkdir(dst_folder) except: print('dir exist!') print('in ' + dst_folder) num = 3 for j in js: img = cv2.imread(folder + '/' + j) / 255. if LIGHTDOWN: for _ in range(num - 1): out = pow(img, np.random.uniform(0.4, 0.6)) * np.random.uniform( 0.25, 0.5) cv2.imwrite(dst_folder + '/' + ('L%d-' % _) + j, out * 255.) out = img * img out = out * (1.0 / out.max()) cv2.imwrite(dst_folder + '/' + ('L%d-' % num) + j, out * 255.) if UNBALANCECOLOR: filter = WB2() outs = np.array([img] * num) features = np.abs(np.random.rand(num, 3)) for _, out in enumerate( filter.process(outs, filter.filter_param_regressor(features))): # print out.max() out /= out.max() out *= np.random.uniform(0.7, 1) cv2.imwrite(dst_folder + '/' + ('C%d-' % _) + j, out * 255.)
Example #20
Source File: util.py From exposure with MIT License | 6 votes |
def vis_images_and_indexs(images, features, dir, name): # indexs = np.reshape(indexs, (len(indexs),)) # print('visualizing images and indexs: ', images.shape, indexs.shape) id_imgs = [] for feature in features: img = np.ones((64, 64, 3)) cv2.putText(img, str(feature), (4, 33), cv2.FONT_HERSHEY_SIMPLEX, 0.25, (1.0, 0.0, 0.0)) id_imgs.append(img) id_imgs = np.stack(id_imgs, axis=0) # print('id imgs: ', id_imgs.shape) vis_imgs = np.vstack([images, id_imgs]) image = make_image_grid(vis_imgs, per_row=images.shape[0]) vis_dir = dir try: os.mkdir(vis_dir) except: pass cv2.imwrite(os.path.join(vis_dir, name + '.png'), image[:, :, ::-1] * 255.0)
Example #21
Source File: test_detection.py From object-detection with MIT License | 6 votes |
def test_motion(): image = cv2.imread("./imgs/image.jpeg") print(image.shape) detector = Detector_Motion() image2 = cv2.imread("./imgs/image_box.jpg") print(image2.shape) assert image.shape == image2.shape image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) image2 = cv2.GaussianBlur(image2, (21, 21), 0) detector.avg = image2.astype(float) output = detector.prediction(image) df = detector.filter_prediction(output, image) image = detector.draw_boxes(image, df) print(df) assert df.shape[0] == 1 cv2.imwrite("./imgs/outputcv.jpg", image)
Example #22
Source File: camera_opencv.py From object-detection with MIT License | 6 votes |
def CaptureContinous(self, detector): cap = cv2.VideoCapture(0) _, image = cap.read() cap.release() output = detector.prediction(image) df = detector.filter_prediction(output, image) if len(df) > 0: if (df['class_name'] .str .contains('person|bird|cat|wine glass|cup|sandwich') .any()): day = datetime.now().strftime("%Y%m%d") directory = os.path.join(IMAGE_FOLDER, 'webcam', day) if not os.path.exists(directory): os.makedirs(directory) image = detector.draw_boxes(image, df) classes = df['class_name'].unique().tolist() hour = datetime.now().strftime("%H%M%S") filename_output = os.path.join( directory, "{}_{}_.jpg".format(hour, "-".join(classes)) ) cv2.imwrite(filename_output, image)
Example #23
Source File: process_dataset.py From facemoji with MIT License | 6 votes |
def extract_faces(emotions): """ Crops faces in emotions images. :param emotions: List of emotions names. """ print("Extracting faces") for emotion in emotions: photos = glob.glob('data/sorted_set/%s/*' % emotion) for file_number, photo in enumerate(photos): frame = cv2.imread(photo) normalized_faces = find_faces(frame) os.remove(photo) for face in normalized_faces: try: cv2.imwrite("data/sorted_set/%s/%s.png" % (emotion, file_number + 1), face[0]) # write image except: print("error in processing %s" % photo)
Example #24
Source File: my.py From 3D-HourGlass-Network with MIT License | 6 votes |
def func1(k=None): if not k: k=randint(0, 20) print('image is',k) for i, (img, heatmap,vecmap,depthmap,kpt_3d) in enumerate(train_loader): if i==k: # test_heatmaps(heatmap,img,i) # test_vecmaps(vecmap,img,i) # edges = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [10, 11], [11, 12], [12, 8], [8, 13], [13, 14], [14, 15], [6, 8], [8, 9]] # ppl=kpt_3d.shape[0] # for i in range(ppl): # for edge in edges: # cv2.line(img,(int(kpt_3d[i][edge[0]][0]),int(kpt_3d[i][edge[0]][1])),(int(kpt_3d[i][edge[1]][0]),int(kpt_3d[i][edge[1]][1])),(0,255,0)) # cv2.imwrite('outside3dfinal.png',img) return img,heatmap,vecmap,depthmap,kpt_3d
Example #25
Source File: my.py From 3D-HourGlass-Network with MIT License | 6 votes |
def func1(k=None): if not k: k=randint(0, 20) print('image is',k) for i, (img, heatmap,vecmap,depthmap,kpt_3d) in enumerate(train_loader): if i==k: # test_heatmaps(heatmap,img,i) # test_vecmaps(vecmap,img,i) # edges = [[0, 1], [1, 2], [2, 6], [6, 3], [3, 4], [4, 5], [10, 11], [11, 12], [12, 8], [8, 13], [13, 14], [14, 15], [6, 8], [8, 9]] # ppl=kpt_3d.shape[0] # for i in range(ppl): # for edge in edges: # cv2.line(img,(int(kpt_3d[i][edge[0]][0]),int(kpt_3d[i][edge[0]][1])),(int(kpt_3d[i][edge[1]][0]),int(kpt_3d[i][edge[1]][1])),(0,255,0)) # cv2.imwrite('outside3dfinal.png',img) return img,heatmap,vecmap,depthmap,kpt_3d
Example #26
Source File: utils.py From AerialDetection with Apache License 2.0 | 6 votes |
def saveimageWithMask(img, outname, mask_poly): dstimg = copy.deepcopy(img) for mask in mask_poly: bound = mask.bounds if (len(bound) < 4): continue xmin, ymin, xmax, ymax = bound[0], bound[1], bound[2], bound[3] for x in range(int(xmin), int(xmax)): for y in range(int(ymin), int(ymax)): point = shgeo.Point(x, y) if point.within(mask): #print('withing') dstimg[int(y)][int(x)] = 0 cv2.imwrite(outname, dstimg)
Example #27
Source File: helpers.py From Advanced_Lane_Lines with MIT License | 6 votes |
def undistort_images(src, dst): """ undistort the images in src folder to dst folder """ # load dst, mtx pickle_file = open("../camera_cal/camera_cal.p", "rb") dist_pickle = pickle.load(pickle_file) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] pickle_file.close() # loop the image folder image_files = glob.glob(src+"*.jpg") for idx, file in enumerate(image_files): print(file) img = mpimg.imread(file) image_dist = cv2.undistort(img, mtx, dist, None, mtx) file_name = file.split("\\")[-1] print(file_name) out_image = dst+file_name print(out_image) image_dist = cv2.cvtColor(image_dist, cv2.COLOR_RGB2BGR) cv2.imwrite(out_image, image_dist)
Example #28
Source File: helpers.py From Advanced_Lane_Lines with MIT License | 6 votes |
def wrap_images(src, dst): """ apply the wrap to images """ # load M, Minv img_size = (1280, 720) pickle_file = open("../helper/trans_pickle.p", "rb") trans_pickle = pickle.load(pickle_file) M = trans_pickle["M"] Minv = trans_pickle["Minv"] # loop the file folder image_files = glob.glob(src+"*.jpg") for idx, file in enumerate(image_files): print(file) img = mpimg.imread(file) image_wraped = cv2.warpPerspective(img, M, img_size, flags=cv2.INTER_LINEAR) file_name = file.split("\\")[-1] print(file_name) out_image = dst+file_name print(out_image) # no need to covert RGB to BGR since 3 channel is same image_wraped = cv2.cvtColor(image_wraped, cv2.COLOR_RGB2BGR) cv2.imwrite(out_image, image_wraped)
Example #29
Source File: image_process.py From Advanced_Lane_Lines with MIT License | 6 votes |
def test_thresh_images(src, dst, s_thresh, sx_thresh): """ apply the thresh to images in a src folder and output to dst foler """ image_files = glob.glob(src+"*.jpg") for idx, file in enumerate(image_files): print(file) img = mpimg.imread(file) image_threshed = color_grid_thresh(img, s_thresh=s_thresh, sx_thresh=sx_thresh) file_name = file.split("\\")[-1] print(file_name) out_image = dst+file_name print(out_image) # convert binary to RGB, *255, to visiual, 1 will not visual after write to file image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB) cv2.imwrite(out_image, image_threshed)
Example #30
Source File: image_process.py From Advanced_Lane_Lines with MIT License | 6 votes |
def test_yellow_grid_thresh_images(src, dst, y_low=(10,50,0), y_high=(30,255,255), sx_thresh=(20, 100)): """ apply the thresh to images in a src folder and output to dst foler """ image_files = glob.glob(src+"*.jpg") for idx, file in enumerate(image_files): print(file) img = mpimg.imread(file) image_threshed = yellow_grid_thresh(img, y_low, y_high, sx_thresh) file_name = file.split("\\")[-1] print(file_name) out_image = dst+file_name print(out_image) # convert binary to RGB, *255, to visiual, 1 will not visual after write to file image_threshed = cv2.cvtColor(image_threshed*255, cv2.COLOR_GRAY2RGB) cv2.imwrite(out_image, image_threshed)