Python cv2.findChessboardCorners() Examples
The following are 18
code examples of cv2.findChessboardCorners().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: stereo_cameras.py From StereoVision with GNU General Public License v3.0 | 7 votes |
def get_chessboard(self, columns, rows, show=False): """ Take a picture with a chessboard visible in both captures. ``columns`` and ``rows`` should be the number of inside corners in the chessboard's columns and rows. ``show`` determines whether the frames are shown while the cameras search for a chessboard. """ found_chessboard = [False, False] # Placeholder for corners found_corners = [None, None] while not all(found_chessboard): frames = self.get_frames() if show: self.show_frames(1) for i, frame in enumerate(frames): (found_chessboard[i], found_corners[i]) = cv2.findChessboardCorners(frame, (columns, rows), flags=cv2.CALIB_CB_FAST_CHECK) return frames, found_corners
Example #2
Source File: calibrate.py From depthai with MIT License | 5 votes |
def find_chessboard(frame): chessboard_flags = cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE small_frame = cv2.resize(frame, (0, 0), fx=0.3, fy=0.3) return cv2.findChessboardCorners(small_frame, (9, 6), chessboard_flags)[0] and \ cv2.findChessboardCorners(frame, (9, 6), chessboard_flags)[0]
Example #3
Source File: 3D_Cube.py From PyCV-time with MIT License | 5 votes |
def cube(img): #img_in = cv2.imread("Picture 27.jpg") #img = cv2.resize(img_in,None,fx=0.5, fy=0.5, interpolation = cv2.INTER_CUBIC) #cv2.imshow('img',img) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #cv2.imshow('gray',gray) ret, corners = cv2.findChessboardCorners(gray, (8,7),None) # print ret,corners criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) objp = np.zeros((7*8,3), np.float32) objp[:,:2] = np.mgrid[0:8,0:7].T.reshape(-1,2) #axis = np.float32([[3,0,0], [0,3,0], [0,0,-3]]).reshape(-1,3) axis = np.float32([[0,0,0], [0,3,0], [3,3,0], [3,0,0], [0,0,-3],[0,3,-3],[3,3,-3],[3,0,-3] ]) if ret == True: cv2.cornerSubPix(gray,corners,(11,11),(-1,-1),criteria) # Find the rotation and translation vectors. rvecs, tvecs, inliers = cv2.solvePnPRansac(objp, corners, mtx, dist) # project 3D points to image plane imgpts, jac = cv2.projectPoints(axis, rvecs, tvecs, mtx, dist) #print imgpts img = draw2(img,corners,imgpts) return img
Example #4
Source File: camera_calibration.py From camera_calibration_API with Apache License 2.0 | 5 votes |
def _chessboard_image_points(self,img): found, corners = cv2.findChessboardCorners(img,(self.pattern_columns,self.pattern_rows)) return(found,corners)
Example #5
Source File: calibration.py From StereoVision with GNU General Public License v3.0 | 5 votes |
def _get_corners(self, image): """Find subpixel chessboard corners in image.""" temp = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(temp, (self.rows, self.columns)) if not ret: raise ChessboardNotFoundError("No chessboard could be found.") cv2.cornerSubPix(temp, corners, (11, 11), (-1, -1), (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 30, 0.01)) return corners
Example #6
Source File: video.py From cvcalib with Apache License 2.0 | 5 votes |
def try_approximate_corners(self, board_dims): found, corners = cv2.findChessboardCorners(self.frame, board_dims) self.current_image_points = corners self.current_board_dims = board_dims return found
Example #7
Source File: video.py From cvcalib with Apache License 2.0 | 5 votes |
def try_approximate_corners_blur(self, board_dims, sharpness_threshold): sharpness = cv2.Laplacian(self.frame, cv2.CV_64F).var() if sharpness < sharpness_threshold: return False found, corners = cv2.findChessboardCorners(self.frame, board_dims) self.current_image_points = corners return found
Example #8
Source File: calibration.py From driving-lane-departure-warning with GNU General Public License v3.0 | 4 votes |
def calibrate_camera(nx, ny, basepath): """ :param nx: number of grids in x axis :param ny: number of grids in y axis :param basepath: path contains the calibration images :return: write calibration file into basepath as calibration_pickle.p """ objp = np.zeros((nx*ny,3), np.float32) objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob(path.join(basepath, 'calibration*.jpg')) # Step through the list and search for chessboard corners for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx,ny),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners img = cv2.drawChessboardCorners(img, (nx,ny), corners, ret) cv2.imshow('input image',img) cv2.waitKey(500) cv2.destroyAllWindows() # calibrate the camera img_size = (img.shape[1], img.shape[0]) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None) # Save the camera calibration result for later use (we don't use rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist destnation = path.join(basepath,'calibration_pickle.p') pickle.dump( dist_pickle, open( destnation, "wb" ) ) print("calibration data is written into: {}".format(destnation)) return mtx, dist
Example #9
Source File: camera_calibration.py From Advanced_Lane_Lines with MIT License | 4 votes |
def calibrate(drawconer=False): ''' read the calibration image and do the camera calibration and output the result to a pickle file. if drawconer is True, will draw the corner on the chessboard file and save it to another folder. ''' # !!! IMPORTANT, set the nx, ny according the calibration chessboard pictures. nx = 9 ny = 6 # prepare object points, like (0,0,0), (1,0,0), (2,0,0), ...(6,5,0) objp = np.zeros((nx*ny,3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d pionts in image plane. # Make a list of calibration images images = glob.glob('chessboard_img/calibration*.jpg') print("Reading the calibration file...") # Step through the list and search for chessboard corners for idx, fname in enumerate(images): img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners print("Searching corners on ", fname, "...") ret, corners = cv2.findChessboardCorners(gray, (nx,ny), None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) if drawconer: cv2.drawChessboardCorners(img, (nx,ny), corners, ret) write_name = 'corners_found'+str(idx)+'.jpg' cv2.imwrite(write_name, img) cv2.imshow('img', img) cv2.waitKey(500) cv2.destroyAllWindows() # Get image size img_size = (img.shape[1],img.shape[0]) # Do camera calibration given object points and image points ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None) # Save the camera calibration result for later use (we won't worry about rvecs / tvecs) print("Saving the parameter to file...>>camera_cal.p") dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist pickle_file = open("camera_cal.p", "wb") pickle.dump(dist_pickle, pickle_file) pickle_file.close()
Example #10
Source File: image.py From perception with Apache License 2.0 | 4 votes |
def find_chessboard(self, sx=6, sy=9): """Finds the corners of an sx X sy chessboard in the image. Parameters ---------- sx : int Number of chessboard corners in x-direction. sy : int Number of chessboard corners in y-direction. Returns ------- :obj:`list` of :obj:`numpy.ndarray` A list containing the 2D points of the corners of the detected chessboard, or None if no chessboard found. """ # termination criteria criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((sx * sy, 3), np.float32) objp[:, :2] = np.mgrid[0:sx, 0:sy].T.reshape(-1, 2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. # create images img = self.data.astype(np.uint8) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, (sx, sy), None) # If found, add object points, image points (after refining them) if ret: objpoints.append(objp) cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) imgpoints.append(corners) if corners is not None: return corners.squeeze() return None
Example #11
Source File: single_camera_calibration.py From stereoDepth with Apache License 2.0 | 4 votes |
def calibrate(dirpath, prefix, image_format, square_size, width=9, height=6): """ Apply camera calibration operation for images in the given directory path. """ # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(8,6,0) objp = np.zeros((height*width, 3), np.float32) objp[:, :2] = np.mgrid[0:width, 0:height].T.reshape(-1, 2) objp = objp * square_size # Create real world coords. Use your metric. # Arrays to store object points and image points from all the images. objpoints = [] # 3d point in real world space imgpoints = [] # 2d points in image plane. # Directory path correction. Remove the last character if it is '/' if dirpath[-1:] == '/': dirpath = dirpath[:-1] # Get the images images = glob.glob(dirpath+'/' + prefix + '*.' + image_format) # Iterate through the pairs and find chessboard corners. Add them to arrays # If openCV can't find the corners in an image, we discard the image. for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, (width, height), None) # If found, add object points, image points (after refining them) if ret: objpoints.append(objp) corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), criteria) imgpoints.append(corners2) # Draw and display the corners # Show the image to see if pattern is found ! imshow function. img = cv2.drawChessboardCorners(img, (width, height), corners2, ret) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) return [ret, mtx, dist, rvecs, tvecs]
Example #12
Source File: app_synced.py From cvcalib with Apache License 2.0 | 4 votes |
def load_frame_images(self): """ Load images (or image pairs) from self.full_frame_folder_path """ print("Loading frames from '{0:s}'".format(self.full_frame_folder_path)) all_files = [f for f in os.listdir(self.full_frame_folder_path) if osp.isfile(osp.join(self.full_frame_folder_path, f)) and f.endswith(".png")] all_files.sort() usable_frame_ct = sys.maxsize frame_number_sets = [] for video in self.videos: # assume matching numbers in corresponding left & right files files = [f for f in all_files if f.startswith(video.name)] files.sort() # added to be explicit cam_frame_ct = 0 frame_numbers = [] for ix_pair in range(len(files)): frame = cv2.imread(osp.join(self.full_frame_folder_path, files[ix_pair])) frame_number = int(re.search(r'\d\d\d\d', files[ix_pair]).group(0)) frame_numbers.append(frame_number) found, corners = cv2.findChessboardCorners(frame, self.board_dims) if not found: raise ValueError("Could not find corners in image '{0:s}'".format(files[ix_pair])) grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.cornerSubPix(grey, corners, (11, 11), (-1, -1), self.criteria_subpix) video.image_points.append(corners) video.usable_frames[frame_number] = ix_pair cam_frame_ct += 1 usable_frame_ct = min(usable_frame_ct, cam_frame_ct) frame_number_sets.append(frame_numbers) if len(self.videos) > 1: # check that all cameras have the same frame number sets if len(frame_number_sets[0]) != len(frame_number_sets[1]): raise ValueError( "There are some non-paired frames in folder '{0:s}'".format(self.full_frame_folder_path)) for i_fn in range(len(frame_number_sets[0])): fn0 = frame_number_sets[0][i_fn] fn1 = frame_number_sets[1][i_fn] if fn0 != fn1: raise ValueError("There are some non-paired frames in folder '{0:s}'." + " Check frame {1:d} for camera {2:s} and frame {3:d} for camera {4:s}." .format(self.full_frame_folder_path, fn0, self.videos[0].name, fn1, self.videos[1].name)) for i_frame in range(usable_frame_ct): self.object_points.append(self.board_object_corner_set) return usable_frame_ct
Example #13
Source File: main.py From fisheye with Apache License 2.0 | 4 votes |
def get_K_and_D(checkerboard, imgsPath): CHECKERBOARD = checkerboard subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1) calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32) objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2) _img_shape = None objpoints = [] imgpoints = [] images = glob.glob(imgsPath + '/*.png') for fname in images: img = cv2.imread(fname) if _img_shape == None: _img_shape = img.shape[:2] else: assert _img_shape == img.shape[:2], "All images must share the same size." gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD,cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE) if ret == True: objpoints.append(objp) cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria) imgpoints.append(corners) N_OK = len(objpoints) K = np.zeros((3, 3)) D = np.zeros((4, 1)) rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)] rms, _, _, _, _ = cv2.fisheye.calibrate( objpoints, imgpoints, gray.shape[::-1], K, D, rvecs, tvecs, calibration_flags, (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6) ) DIM = _img_shape[::-1] print("Found " + str(N_OK) + " valid images for calibration") print("DIM=" + str(_img_shape[::-1])) print("K=np.array(" + str(K.tolist()) + ")") print("D=np.array(" + str(D.tolist()) + ")") return DIM, K, D
Example #14
Source File: camera_calibration.py From lane_tracker with GNU General Public License v3.0 | 4 votes |
def get_calibration_points(images, nx, ny): ''' Generate two lists of calibration points from a set of calibration images of chess boards to needed for `cv2.calibrateCamera()`. It is recommended that `images` contain at least 20 images. All images are expected to be of identical size and to contain the same, complete chess board pattern. Args: images (array-like): A list of file names of the images to be used for calibration. nx (int): The number of horizontal inner corners (i.e. corners where two white and two black tiles meet) of the chess board. ny (int): The number of vertical inner corners (i.e. corners where two white and two black tiles meet) of the chess board. Returns: object_points (list): The list of 3-D object points for calibration. image_points (list): The list of 2-D image points for calibration. ''' image_size = [] # Arrays to store object points and image points # of all calibration images for `cv2.calibrateCamera()`. object_points = [] # 3-D points in real world space image_points = [] # 2-D points in image plane. # All calibration images are expected to contain the same calibration pattern, # so the object points are the same for all images. # Format: (0,0,0), (1,0,0), (2,0,0), ...., (8,5,0) # The third coordinate is always zero as the points lie in a plane. objp = np.zeros((nx*ny,3), np.float32) objp[:,:2] = np.mgrid[0:nx, 0:ny].T.reshape(-1,2) # Step through the list and search for chess board corners for i, fname in enumerate(images): img = cv2.imread(fname) size = (img.shape[1], img.shape[0]) if i == 0: image_size = size if size != image_size: raise ValueError("Expected all images to have identical size, but found varying sizes.") image_size = size gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chess board corners ret, corners = cv2.findChessboardCorners(gray, (nx, ny), None) # If found, add object points, image points if ret == True: object_points.append(objp) image_points.append(corners) return object_points, image_points, image_size
Example #15
Source File: calibrate.py From pyslam with GNU General Public License v3.0 | 4 votes |
def processImage(fn): print('processing %s... ' % fn) img = cv.imread(fn, 0) if img is None: print("Failed to load", fn) return None assert w == img.shape[1] and h == img.shape[0], ("size: %d x %d ... " % (img.shape[1], img.shape[0])) found, corners = cv.findChessboardCorners(img, pattern_size) if found: term = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_COUNT, 30, 0.1) cv.cornerSubPix(img, corners, (5, 5), (-1, -1), term) if debug_dir: vis = cv.cvtColor(img, cv.COLOR_GRAY2BGR) cv.drawChessboardCorners(vis, pattern_size, corners, found) _path, name, _ext = splitfn(fn) outfile = os.path.join(debug_dir, name + '_chess.png') cv.imwrite(outfile, vis) if not found: print('chessboard not found') return None print(' %s... OK' % fn) return (corners.reshape(-1, 2), pattern_points)
Example #16
Source File: calibration_utils.py From VerifAI with BSD 3-Clause "New" or "Revised" License | 4 votes |
def calibrate_camera(calib_images_dir, verbose=False): """ Calibrate the camera given a directory containing calibration chessboards. :param calib_images_dir: directory containing chessboard frames :param verbose: if True, draw and show chessboard corners :return: calibration parameters """ assert path.exists(calib_images_dir), '"{}" must exist and contain calibration images.'.format(calib_images_dir) # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) objp = np.zeros((6 * 9, 3), np.float32) objp[:, :2] = np.mgrid[0:9, 0:6].T.reshape(-1, 2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob(path.join(calib_images_dir, 'calibration*.jpg')) # Step through the list and search for chessboard corners for filename in images: img = cv2.imread(filename) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Find the chessboard corners pattern_found, corners = cv2.findChessboardCorners(gray, (9, 6), None) if pattern_found is True: objpoints.append(objp) imgpoints.append(corners) if verbose: # Draw and display the corners img = cv2.drawChessboardCorners(img, (9, 6), corners, pattern_found) cv2.imshow('img',img) cv2.waitKey(500) if verbose: cv2.destroyAllWindows() ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None) return ret, mtx, dist, rvecs, tvecs
Example #17
Source File: calibration.py From vehicle-detection with GNU General Public License v3.0 | 4 votes |
def calibrate_camera(nx, ny, basepath): """ :param nx: number of grids in x axis :param ny: number of grids in y axis :param basepath: path contains the calibration images :return: write calibration file into basepath as calibration_pickle.p """ objp = np.zeros((nx*ny,3), np.float32) objp[:,:2] = np.mgrid[0:nx,0:ny].T.reshape(-1,2) # Arrays to store object points and image points from all the images. objpoints = [] # 3d points in real world space imgpoints = [] # 2d points in image plane. # Make a list of calibration images images = glob.glob(path.join(basepath, 'calibration*.jpg')) # Step through the list and search for chessboard corners for fname in images: img = cv2.imread(fname) gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # Find the chessboard corners ret, corners = cv2.findChessboardCorners(gray, (nx,ny),None) # If found, add object points, image points if ret == True: objpoints.append(objp) imgpoints.append(corners) # Draw and display the corners img = cv2.drawChessboardCorners(img, (nx,ny), corners, ret) cv2.imshow('input image',img) cv2.waitKey(500) cv2.destroyAllWindows() # calibrate the camera img_size = (img.shape[1], img.shape[0]) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, img_size, None, None) # Save the camera calibration result for later use (we don't use rvecs / tvecs) dist_pickle = {} dist_pickle["mtx"] = mtx dist_pickle["dist"] = dist destnation = path.join(basepath,'calibration_pickle.p') pickle.dump( dist_pickle, open( destnation, "wb" ) ) print("calibration data is written into: {}".format(destnation)) return mtx, dist
Example #18
Source File: calibration_utils.py From depthai with MIT License | 4 votes |
def process_images(self, filepath): """Read images, detect corners, refine corners, and save data.""" # Arrays to store object points and image points from all the images. self.objpoints = [] # 3d point in real world space self.imgpoints_l = [] # 2d points in image plane. self.imgpoints_r = [] # 2d points in image plane. self.calib_successes = [] # polygon ids of left/right image sets with checkerboard corners. images_left = glob.glob(filepath + "/left/*") images_right = glob.glob(filepath + "/right/*") images_left.sort() images_right.sort() print("\nAttempting to read images for left camera from dir: " + filepath + "/left/") print("Attempting to read images for right camera from dir: " + filepath + "/right/") assert len(images_left) != 0, "ERROR: Images not read correctly, check directory" assert len(images_right) != 0, "ERROR: Images not read correctly, check directory" for image_left, image_right in zip(images_left, images_right): img_l = cv2.imread(image_left, 0) img_r = cv2.imread(image_right, 0) assert img_l is not None, "ERROR: Images not read correctly" assert img_r is not None, "ERROR: Images not read correctly" print("Finding chessboard corners for %s and %s..." % (os.path.basename(image_left), os.path.basename(image_right))) start_time = time.time() # Find the chess board corners flags = 0 flags |= cv2.CALIB_CB_ADAPTIVE_THRESH flags |= cv2.CALIB_CB_NORMALIZE_IMAGE ret_l, corners_l = cv2.findChessboardCorners(img_l, (9, 6), flags) ret_r, corners_r = cv2.findChessboardCorners(img_r, (9, 6), flags) # termination criteria self.criteria = (cv2.TERM_CRITERIA_MAX_ITER + cv2.TERM_CRITERIA_EPS, 30, 0.001) # if corners are found in both images, refine and add data if ret_l and ret_r: self.objpoints.append(self.objp) rt = cv2.cornerSubPix(img_l, corners_l, (5, 5), (-1, -1), self.criteria) self.imgpoints_l.append(corners_l) rt = cv2.cornerSubPix(img_r, corners_r, (5, 5), (-1, -1), self.criteria) self.imgpoints_r.append(corners_r) self.calib_successes.append(polygon_from_image_name(image_left)) print("\t[OK]. Took %i seconds." % (round(time.time() - start_time, 2))) else: print("\t[ERROR] - Corners not detected. Took %i seconds." % (round(time.time() - start_time, 2))) self.img_shape = img_r.shape[::-1] print(str(len(self.objpoints)) + " of " + str(len(images_left)) + " images being used for calibration") self.ensure_valid_images()