Python network.Network() Examples
The following are 27
code examples of network.Network().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
network
, or try the search function
.
Example #1
Source File: utils.py From pytorch-vfi-cft with GNU General Public License v3.0 | 7 votes |
def load_model(weight_path, continuous_fine_tuning=False): weight_path = os.path.abspath(weight_path) if not os.path.exists(weight_path): raise RuntimeError("Could not find file: " + weight_path + ". Did you remember to download the pretrained model?") if weight_path.endswith('.gz'): with gzip.open(weight_path, 'rb') as f_in: state = torch.load(f_in, get_device()) else: state = torch.load(weight_path, get_device()) net = Network() net.to(net.device) net.load_state_dict(state['network']) if continuous_fine_tuning: net.cft = CFT(state, net) return net
Example #2
Source File: consensus.py From research with MIT License | 7 votes |
def test(): n = Network(LATENCY * 2) nodes = [Node(n, i, i%4==0) for i in range(20)] for i in range(30): for _ in range(2): z = random.randrange(20) n.send_to([1000 + i], z, at=5+i*2) for i in range(21 * LATENCY): n.tick() if i % 10 == 0: print("Value sets", [sorted(node.seen.keys()) for node in nodes]) countz = {} maxval = "" for node in nodes: if node.honest: k = str(sorted(node.seen.keys())) countz[k] = countz.get(k, 0) + 1 if countz[k] > countz.get(maxval, 0): maxval = k print("Most popular: %s" % maxval, "with %d agreeing" % countz[maxval])
Example #3
Source File: optimizer.py From mnist-multi-gpu with Apache License 2.0 | 7 votes |
def mutate(self, network): """Randomly mutate one part of the network. Args: network (dict): The network parameters to mutate Returns: (Network): A randomly mutated network object """ # Choose a random key. mutation = random.choice(list(self.nn_param_choices.keys())) # Mutate one of the params. network.network[mutation] = random.choice(self.nn_param_choices[mutation]) return network
Example #4
Source File: optimizer.py From mnist-multi-gpu with Apache License 2.0 | 7 votes |
def create_population(self, count): """Create a population of random networks. Args: count (int): Number of networks to generate, aka the size of the population Returns: (list): Population of network objects """ pop = [] for _ in range(0, count): # Create a random network. network = Network(self.nn_param_choices) network.create_random() # Add the network to our population. pop.append(network) return pop
Example #5
Source File: main.py From 3DRegNet with MIT License | 7 votes |
def main(config): #Initialize Network net = Network(config) data = {} if config.run_mode == 'train': data['train'] = load_data(config, 'train') net.train(data) if config.run_mode == 'test': data['test'] = load_data(config, 'test') net.test(data) return 0
Example #6
Source File: run_mlp.py From Artificial-Neural-Network-THU-2018 with MIT License | 7 votes |
def three_layer_relu(): model = Network() model.add(Linear('fc1', 784, 256, 0.001)) model.add(Relu('rl1')) model.add(Linear('fc2', 256, 128, 0.001)) model.add(Relu('rl2')) model.add(Linear('fc3', 128, 10, 0.001)) model.add(Relu('rl3')) config = { 'learning_rate': 0.0001, 'weight_decay': 0.005, 'momentum': 0.9, 'batch_size': 300, 'max_epoch': 60, 'disp_freq': 50, 'test_epoch': 5 } return model, config
Example #7
Source File: run_mlp.py From Artificial-Neural-Network-THU-2018 with MIT License | 7 votes |
def three_layer_sigmoid(): model = Network() model.add(Linear('fc1', 784, 256, 0.001)) model.add(Sigmoid('sg1')) model.add(Linear('fc2', 256, 128, 0.001)) model.add(Sigmoid('sg2')) model.add(Linear('fc3', 128, 10, 0.001)) model.add(Sigmoid('sg3')) config = { 'learning_rate': 0.01, 'weight_decay': 0.005, 'momentum': 0.9, 'batch_size': 300, 'max_epoch': 60, 'disp_freq': 50, 'test_epoch': 5 } return model, config
Example #8
Source File: run_mlp.py From Artificial-Neural-Network-THU-2018 with MIT License | 7 votes |
def two_layer_relu(): model = Network() model.add(Linear('fc1', 784, 256, 0.001)) model.add(Relu('rl1')) model.add(Linear('fc2', 256, 10, 0.001)) model.add(Relu('rl2')) config = { 'learning_rate': 0.0001, 'weight_decay': 0.005, 'momentum': 0.9, 'batch_size': 200, 'max_epoch': 40, 'disp_freq': 50, 'test_epoch': 5 } return model, config
Example #9
Source File: run_mlp.py From Artificial-Neural-Network-THU-2018 with MIT License | 7 votes |
def two_layer_sigmoid(): model = Network() model.add(Linear('fc1', 784, 256, 0.001)) model.add(Sigmoid('sg1')) model.add(Linear('fc2', 256, 10, 0.001)) model.add(Sigmoid('sg2')) config = { 'learning_rate': 0.01, 'weight_decay': 0.005, 'momentum': 0.9, 'batch_size': 100, 'max_epoch': 20, 'disp_freq': 50, 'test_epoch': 5 } return model, config
Example #10
Source File: eval_lfw.py From Probabilistic-Face-Embeddings with MIT License | 7 votes |
def main(args): paths = Dataset(args.dataset_path)['abspath'] print('%d images to load.' % len(paths)) assert(len(paths)>0) # Load model files and config file network = Network() network.load_model(args.model_dir) images = preprocess(paths, network.config, False) # Run forward pass to calculate embeddings mu, sigma_sq = network.extract_feature(images, args.batch_size, verbose=True) feat_pfe = np.concatenate([mu, sigma_sq], axis=1) lfwtest = LFWTest(paths) lfwtest.init_standard_proto(args.protocol_path) accuracy, threshold = lfwtest.test_standard_proto(mu, utils.pair_euc_score) print('Euclidean (cosine) accuracy: %.5f threshold: %.5f' % (accuracy, threshold)) accuracy, threshold = lfwtest.test_standard_proto(feat_pfe, utils.pair_MLS_score) print('MLS accuracy: %.5f threshold: %.5f' % (accuracy, threshold))
Example #11
Source File: optimizer.py From neural-network-genetic-algorithm with MIT License | 7 votes |
def mutate(self, network): """Randomly mutate one part of the network. Args: network (dict): The network parameters to mutate Returns: (Network): A randomly mutated network object """ # Choose a random key. mutation = random.choice(list(self.nn_param_choices.keys())) # Mutate one of the params. network.network[mutation] = random.choice(self.nn_param_choices[mutation]) return network
Example #12
Source File: daemon.py From encompass with GNU General Public License v3.0 | 7 votes |
def __init__(self, config): threading.Thread.__init__(self) self.daemon = True self.debug = False self.config = config self.network = Network(config) # network sends responses on that queue self.network_queue = Queue.Queue() self.running = False self.lock = threading.RLock() # each GUI is a client of the daemon self.clients = [] self.request_id = 0 self.requests = {}
Example #13
Source File: optimizer.py From neural-network-genetic-algorithm with MIT License | 6 votes |
def breed(self, mother, father): """Make two children as parts of their parents. Args: mother (dict): Network parameters father (dict): Network parameters Returns: (list): Two network objects """ children = [] for _ in range(2): child = {} # Loop through the parameters and pick params for the kid. for param in self.nn_param_choices: child[param] = random.choice( [mother.network[param], father.network[param]] ) # Now create a network object. network = Network(self.nn_param_choices) network.create_set(child) # Randomly mutate some of the children. if self.mutate_chance > random.random(): network = self.mutate(network) children.append(network) return children
Example #14
Source File: optimizer.py From neural-network-genetic-algorithm with MIT License | 6 votes |
def create_population(self, count): """Create a population of random networks. Args: count (int): Number of networks to generate, aka the size of the population Returns: (list): Population of network objects """ pop = [] for _ in range(0, count): # Create a random network. network = Network(self.nn_param_choices) network.create_random() # Add the network to our population. pop.append(network) return pop
Example #15
Source File: nodes.py From anima with MIT License | 5 votes |
def __init__(self, nodesName_in): self.nodesName = nodesName_in self._controllers = [] self._utilities = [] self._joints = [] self._curves = [] self.network = Network(self.nodesName)
Example #16
Source File: nodes.py From anima with MIT License | 5 votes |
def appendObject(self, nodeType, object_in): #appends the given objects to the node Network if isinstance(object_in, (list)): for obj in object_in: if isinstance(obj, (list)): for ob in obj: self.append_to(nodeType, ob) else: self.append_to(nodeType, obj) else: self.append_to(nodeType, object_in)
Example #17
Source File: run_mlp.py From Artificial-Neural-Network-THU-2018 with MIT License | 5 votes |
def one_layer_net(): model = Network() model.add(Linear('fc1', 784, 10, 0.001)) config = { 'learning_rate': 0.00001, 'weight_decay': 0.005, 'momentum': 0.9, 'batch_size': 50, 'max_epoch': 10, 'disp_freq': 50, 'test_epoch': 5 } return model, config
Example #18
Source File: test.py From glcic with MIT License | 5 votes |
def test(): x = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) mask = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 1]) local_x = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) global_completion = tf.placeholder(tf.float32, [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]) local_completion = tf.placeholder(tf.float32, [BATCH_SIZE, LOCAL_SIZE, LOCAL_SIZE, 3]) is_training = tf.placeholder(tf.bool, []) model = Network(x, mask, local_x, global_completion, local_completion, is_training, batch_size=BATCH_SIZE) sess = tf.Session() init_op = tf.global_variables_initializer() sess.run(init_op) saver = tf.train.Saver() saver.restore(sess, '../backup/latest') x_test = np.load(test_npy) np.random.shuffle(x_test) x_test = np.array([a / 127.5 - 1 for a in x_test]) step_num = int(len(x_test) / BATCH_SIZE) cnt = 0 for i in tqdm.tqdm(range(step_num)): x_batch = x_test[i * BATCH_SIZE:(i + 1) * BATCH_SIZE] _, mask_batch = get_points() completion = sess.run(model.completion, feed_dict={x: x_batch, mask: mask_batch, is_training: False}) for i in range(BATCH_SIZE): cnt += 1 raw = x_batch[i] raw = np.array((raw + 1) * 127.5, dtype=np.uint8) masked = raw * (1 - mask_batch[i]) + np.ones_like(raw) * mask_batch[i] * 255 img = completion[i] img = np.array((img + 1) * 127.5, dtype=np.uint8) dst = './output/{}.jpg'.format("{0:06d}".format(cnt)) output_image([['Input', masked], ['Output', img], ['Ground Truth', raw]], dst)
Example #19
Source File: network_proxy.py From encompass with GNU General Public License v3.0 | 5 votes |
def switch_to_active_chain(self): # print("\nNetworkProxy switch to active chain, waiting for lock") with self.lock: # print(" Got lock") self.message_id = 0 self.unanswered_requests = {} self.subscriptions = {} self.pending_transactions_for_notifications = [] # print(" Stopping current network") self.network.stop() time.sleep(0.3) self.network = Network(self.config) # print(" Set new network") self.pipe = util.QueuePipe(send_queue=self.network.requests_queue) self.network.start(self.pipe.get_queue) # print(" Started new network") self.status = 'connecting' self.servers = {} self.banner = '' self.blockchain_height = 0 self.server_height = 0 self.interfaces = [] for key in ['status','banner','updated','servers','interfaces']: value = self.network.get_status_value(key) self.pipe.get_queue.put({'method':'network.status', 'params':[key, value]})
Example #20
Source File: network_proxy.py From encompass with GNU General Public License v3.0 | 5 votes |
def __init__(self, socket, config=None): if config is None: config = {} # Do not use mutables as default arguments! threading.Thread.__init__(self) self.config = SimpleConfig(config) if type(config) == type({}) else config self.message_id = 0 self.unanswered_requests = {} self.subscriptions = {} self.debug = False self.lock = threading.Lock() self.pending_transactions_for_notifications = [] self.callbacks = {} self.running = True self.daemon = True if socket: self.pipe = util.SocketPipe(socket) self.network = None else: self.network = Network(config) self.pipe = util.QueuePipe(send_queue=self.network.requests_queue) self.network.start(self.pipe.get_queue) for key in ['status','banner','updated','servers','interfaces']: value = self.network.get_status_value(key) self.pipe.get_queue.put({'method':'network.status', 'params':[key, value]}) # status variables self.status = 'connecting' self.servers = {} self.banner = '' self.blockchain_height = 0 self.server_height = 0 self.interfaces = []
Example #21
Source File: main.py From gated-pixel-cnn with Apache License 2.0 | 5 votes |
def main(_): model_dir = util.get_model_dir(conf, ['data_dir', 'sample_dir', 'max_epoch', 'test_step', 'save_step', 'is_train', 'random_seed', 'log_level', 'display', 'runtime_base_dir', 'occlude_start_row', 'num_generated_images']) util.preprocess_conf(conf) validate_parameters(conf) data = 'mnist' if conf.data == 'color-mnist' else conf.data DATA_DIR = os.path.join(conf.runtime_base_dir, conf.data_dir, data) SAMPLE_DIR = os.path.join(conf.runtime_base_dir, conf.sample_dir, conf.data, model_dir) util.check_and_create_dir(DATA_DIR) util.check_and_create_dir(SAMPLE_DIR) dataset = get_dataset(DATA_DIR, conf.q_levels) with tf.Session() as sess: network = Network(sess, conf, dataset.height, dataset.width, dataset.channels) stat = Statistic(sess, conf.data, conf.runtime_base_dir, model_dir, tf.trainable_variables()) stat.load_model() if conf.is_train: train(dataset, network, stat, SAMPLE_DIR) else: generate(network, dataset.height, dataset.width, SAMPLE_DIR)
Example #22
Source File: brute.py From neural-network-genetic-algorithm with MIT License | 5 votes |
def generate_network_list(nn_param_choices): """Generate a list of all possible networks. Args: nn_param_choices (dict): The parameter choices Returns: networks (list): A list of network objects """ networks = [] # This is silly. for nbn in nn_param_choices['nb_neurons']: for nbl in nn_param_choices['nb_layers']: for a in nn_param_choices['activation']: for o in nn_param_choices['optimizer']: # Set the parameters. network = { 'nb_neurons': nbn, 'nb_layers': nbl, 'activation': a, 'optimizer': o, } # Instantiate a network object with set parameters. network_obj = Network() network_obj.create_set(network) networks.append(network_obj) return networks
Example #23
Source File: optimizer.py From mnist-multi-gpu with Apache License 2.0 | 5 votes |
def breed(self, mother, father): """Make two children as parts of their parents. Args: mother (dict): Network parameters father (dict): Network parameters Returns: (list): Two network objects """ children = [] for _ in range(2): child = {} # Loop through the parameters and pick params for the kid. for param in self.nn_param_choices: child[param] = random.choice( [mother.network[param], father.network[param]] ) # Now create a network object. network = Network(self.nn_param_choices) network.create_set(child) children.append(network) return children
Example #24
Source File: eval_ijb.py From Probabilistic-Face-Embeddings with MIT License | 5 votes |
def main(args): network = Network() network.load_model(args.model_dir) proc_func = lambda x: preprocess(x, network.config, False) testset = Dataset(args.dataset_path) if args.protocol == 'ijba': tester = IJBATest(testset['abspath'].values) tester.init_proto(args.protocol_path) elif args.protocol == 'ijbc': tester = IJBCTest(testset['abspath'].values) tester.init_proto(args.protocol_path) else: raise ValueError('Unkown protocol. Only accept "ijba" or "ijbc".') mu, sigma_sq = network.extract_feature(tester.image_paths, args.batch_size, proc_func=proc_func, verbose=True) features = np.concatenate([mu, sigma_sq], axis=1) print('---- Average pooling') aggregate_templates(tester.verification_templates, features, 'mean') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_euc_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i])) print('---- Uncertainty pooling') aggregate_templates(tester.verification_templates, features, 'PFE_fuse') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_euc_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i])) print('---- MLS comparison') aggregate_templates(tester.verification_templates, features, 'PFE_fuse_match') TARs, std, FARs = tester.test_verification(force_compare(utils.pair_MLS_score)) for i in range(len(TARs)): print('TAR: {:.5} +- {:.5} FAR: {:.5}'.format(TARs[i], std[i], FARs[i]))
Example #25
Source File: brute.py From mnist-multi-gpu with Apache License 2.0 | 5 votes |
def generate_network_list(nn_param_choices): """Generate a list of all possible networks. Args: nn_param_choices (dict): The parameter choices Returns: networks (list): A list of network objects """ networks = [] # This is silly. for nbn in nn_param_choices['nb_neurons']: for nbl in nn_param_choices['nb_layers']: for a in nn_param_choices['activation']: for o in nn_param_choices['optimizer']: # Set the parameters. network = { 'nb_neurons': nbn, 'nb_layers': nbl, 'activation': a, 'optimizer': o, } # Instantiate a network object with set parameters. network_obj = Network() network_obj.create_set(network) networks.append(network_obj) return networks
Example #26
Source File: train.py From Probabilistic-Face-Embeddings with MIT License | 4 votes |
def main(args): # I/O config_file = args.config_file config = imp.load_source('config', config_file) if args.name: config.name = args.name trainset = Dataset(config.train_dataset_path) network = Network() network.initialize(config, trainset.num_classes) # Initalization for running log_dir = utils.create_log_dir(config, config_file) summary_writer = tf.summary.FileWriter(log_dir, network.graph) if config.restore_model: network.restore_model(config.restore_model, config.restore_scopes) proc_func = lambda images: preprocess(images, config, True) trainset.start_batch_queue(config.batch_format, proc_func=proc_func) # Main Loop print('\nStart Training\nname: {}\n# epochs: {}\nepoch_size: {}\nbatch_size: {}\n'.format( config.name, config.num_epochs, config.epoch_size, config.batch_format['size'])) global_step = 0 start_time = time.time() for epoch in range(config.num_epochs): # Training for step in range(config.epoch_size): # Prepare input learning_rate = utils.get_updated_learning_rate(global_step, config) batch = trainset.pop_batch_queue() wl, sm, global_step = network.train(batch['image'], batch['label'], learning_rate, config.keep_prob) wl['lr'] = learning_rate # Display if step % config.summary_interval == 0: duration = time.time() - start_time start_time = time.time() utils.display_info(epoch, step, duration, wl) summary_writer.add_summary(sm, global_step=global_step) # Save the model network.save_model(log_dir, global_step)
Example #27
Source File: frcnn.py From incremental_detectors with BSD 3-Clause "New" or "Revised" License | 4 votes |
def eval_network(sess): net = Network(num_classes=args.num_classes+args.extend, distillation=False) _, _, remain = split_classes() loader = get_loader(False, remain) is_voc = loader.dataset == 'voc' if args.eval_ckpts != '': ckpts = args.eval_ckpts.split(',') else: ckpts = [args.ckpt] global_results = {cat: [] for cat in loader.categories} global_results[AVERAGE+" 1-10"] = [] global_results[AVERAGE+" 11-20"] = [] global_results[AVERAGE+" ALL"] = [] for ckpt in ckpts: if ckpt[-1].lower() == 'k': ckpt_num = int(ckpt[:-1])*1000 else: ckpt_num = int(ckpt) init_op, init_feed_dict = restore_ckpt(ckpt_num=ckpt_num) sess.run(init_op, feed_dict=init_feed_dict) log.info("Checkpoint {}".format(ckpt)) if is_voc: results = Evaluation(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n) for cat in loader.categories: global_results[cat].append(results[cat] if cat in results else 0.0) # TODO add output formating, line after learnt cats old_classes = [results.get(k, 0) for k in loader.categories[:10]] new_classes = [results.get(k, 0) for k in loader.categories[10:]] all_classes = [results.get(k, 0) for k in loader.categories] global_results[AVERAGE+" 1-10"].append(np.mean(old_classes)) global_results[AVERAGE+" 11-20"].append(np.mean(new_classes)) global_results[AVERAGE+" ALL"].append(np.mean(all_classes)) headers = ['Category'] + [("mAP (%s, %i img)" % (ckpt, args.eval_first_n)) for ckpt in ckpts] table_src = [] for cat in loader.categories: table_src.append([cat] + global_results[cat]) table_src.append([AVERAGE+" 1-10", ] + global_results[AVERAGE+" 1-10"]) table_src.append([AVERAGE+" 11-20", ] + global_results[AVERAGE+" 11-20"]) table_src.append([AVERAGE+" ALL", ] + global_results[AVERAGE+" ALL"]) out = tabulate(table_src, headers=headers, floatfmt=".1f", tablefmt='orgtbl') with open("/home/lear/kshmelko/scratch/logs/results_voc/%s.pkl" % args.run_name, 'wb') as f: pickle.dump(global_results, f, pickle.HIGHEST_PROTOCOL) log.info("Summary table over %i checkpoints\nExperiment: %s\n%s", len(ckpts), args.run_name, out) else: results = COCOEval(net, loader, ckpt_num, args.conf_thresh, args.nms_thresh).evaluate_network(args.eval_first_n)