Python sklearn.cluster.FeatureAgglomeration() Examples
The following are 6
code examples of sklearn.cluster.FeatureAgglomeration().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.cluster
, or try the search function
.
Example #1
Source File: test_hierarchical.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hierarchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hierarchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0])
Example #2
Source File: test_hierarchical.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert np.size(np.unique(agglo.labels_)) == 5 X_red = agglo.transform(X) assert X_red.shape[1] == 5 X_full = agglo.inverse_transform(X_red) assert np.unique(X_full[0]).size == 5 assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0])
Example #3
Source File: test_hierarchical.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_linkage_misc(): # Misc tests on linkage rng = np.random.RandomState(42) X = rng.normal(size=(5, 5)) assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X) assert_raises(ValueError, linkage_tree, X, linkage='foo') assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4))) # Smoke test FeatureAgglomeration FeatureAgglomeration().fit(X) # test hierarchical clustering on a precomputed distances matrix dis = cosine_distances(X) res = linkage_tree(dis, affinity="precomputed") assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0]) # test hierarchical clustering on a precomputed distances matrix res = linkage_tree(X, affinity=manhattan_distances) assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0])
Example #4
Source File: test_hierarchical.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert_true(np.size(np.unique(agglo.labels_)) == 5) X_red = agglo.transform(X) assert_true(X_red.shape[1] == 5) X_full = agglo.inverse_transform(X_red) assert_true(np.unique(X_full[0]).size == 5) assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError assert_raises(ValueError, agglo.fit, X[:0])
Example #5
Source File: test_feature_agglomeration.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_feature_agglomeration(): n_clusters = 1 X = np.array([0, 0, 1]).reshape(1, 3) # (n_samples, n_features) agglo_mean = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.mean) agglo_median = FeatureAgglomeration(n_clusters=n_clusters, pooling_func=np.median) assert_no_warnings(agglo_mean.fit, X) assert_no_warnings(agglo_median.fit, X) assert np.size(np.unique(agglo_mean.labels_)) == n_clusters assert np.size(np.unique(agglo_median.labels_)) == n_clusters assert np.size(agglo_mean.labels_) == X.shape[1] assert np.size(agglo_median.labels_) == X.shape[1] # Test transform Xt_mean = agglo_mean.transform(X) Xt_median = agglo_median.transform(X) assert Xt_mean.shape[1] == n_clusters assert Xt_median.shape[1] == n_clusters assert Xt_mean == np.array([1 / 3.]) assert Xt_median == np.array([0.]) # Test inverse transform X_full_mean = agglo_mean.inverse_transform(Xt_mean) X_full_median = agglo_median.inverse_transform(Xt_median) assert np.unique(X_full_mean[0]).size == n_clusters assert np.unique(X_full_median[0]).size == n_clusters assert_array_almost_equal(agglo_mean.transform(X_full_mean), Xt_mean) assert_array_almost_equal(agglo_median.transform(X_full_median), Xt_median)
Example #6
Source File: test_cluster.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 3 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.cluster.AffinityPropagation, cluster.AffinityPropagation) self.assertIs(df.cluster.AgglomerativeClustering, cluster.AgglomerativeClustering) self.assertIs(df.cluster.Birch, cluster.Birch) self.assertIs(df.cluster.DBSCAN, cluster.DBSCAN) self.assertIs(df.cluster.FeatureAgglomeration, cluster.FeatureAgglomeration) self.assertIs(df.cluster.KMeans, cluster.KMeans) self.assertIs(df.cluster.MiniBatchKMeans, cluster.MiniBatchKMeans) self.assertIs(df.cluster.MeanShift, cluster.MeanShift) self.assertIs(df.cluster.SpectralClustering, cluster.SpectralClustering) self.assertIs(df.cluster.bicluster.SpectralBiclustering, cluster.bicluster.SpectralBiclustering) self.assertIs(df.cluster.bicluster.SpectralCoclustering, cluster.bicluster.SpectralCoclustering)