Python sklearn.__version__() Examples
The following are 30
code examples of sklearn.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn
, or try the search function
.
Example #1
Source File: utility.py From pyod with BSD 2-Clause "Simplified" License | 7 votes |
def _get_sklearn_version(): # pragma: no cover """ Utility function to decide the version of sklearn. PyOD will result in different behaviors with different sklearn version Returns ------- sk_learn version : int """ sklearn_version = str(sklearn.__version__) if int(sklearn_version.split(".")[1]) < 19 or int( sklearn_version.split(".")[1]) > 23: raise ValueError("Sklearn version error") return int(sklearn_version.split(".")[1])
Example #2
Source File: nanotron.py From picasso with MIT License | 6 votes |
def save_model(self): if self.mlp is not None: fname, ext = QtWidgets.QFileDialog.getSaveFileName( self, "Save mode file", "model.sav", ".sav", ) base, ext = _ospath.splitext(fname) fname = base + ".sav" self.train_log["Model"] = fname self.train_log["Generated by"] = "Picasso nanoTRON : Train" import sklearn self.train_log["Scikit-Learn Version"] = sklearn.__version__ self.train_log["Created on"] = datetime.datetime.now() if fname: joblib.dump(self.mlp, fname) print("Saving complete.") info_path = base + ".yaml" io.save_info(info_path, [self.train_log])
Example #3
Source File: dispatcher.py From daal4py with Apache License 2.0 | 6 votes |
def enable(name=None, verbose=True): if LooseVersion(sklearn_version) < LooseVersion("0.20.0"): raise NotImplementedError("daal4py patches apply for scikit-learn >= 0.20.0 only ...") elif LooseVersion(sklearn_version) > LooseVersion("0.23.1"): warn_msg = ("daal4py {daal4py_version} has only been tested " + "with scikit-learn 0.23.1, found version: {sklearn_version}") warnings.warn(warn_msg.format( daal4py_version=daal4py_version, sklearn_version=sklearn_version) ) if name is not None: do_patch(name) else: for key in _mapping: do_patch(key) if verbose and sys.stderr is not None: sys.stderr.write("Intel(R) Data Analytics Acceleration Library (Intel(R) DAAL) solvers for sklearn enabled: " "https://intelpython.github.io/daal4py/sklearn.html\n")
Example #4
Source File: utility.py From pyod with BSD 2-Clause "Simplified" License | 6 votes |
def _sklearn_version_21(): # pragma: no cover """ Utility function to decide the version of sklearn In sklearn 21.0, LOF is changed. Specifically, _decision_function is replaced by _score_samples Returns ------- sklearn_21_flag : bool True if sklearn.__version__ is newer than 0.21.0 """ sklearn_version = str(sklearn.__version__) if int(sklearn_version.split(".")[1]) > 20: return True else: return False
Example #5
Source File: sklearn.py From mlflow with Apache License 2.0 | 6 votes |
def get_default_conda_env(include_cloudpickle=False): """ :return: The default Conda environment for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. """ import sklearn pip_deps = None if include_cloudpickle: import cloudpickle pip_deps = ["cloudpickle=={}".format(cloudpickle.__version__)] return _mlflow_conda_env( additional_conda_deps=[ "scikit-learn={}".format(sklearn.__version__), ], additional_pip_deps=pip_deps, additional_conda_channels=None )
Example #6
Source File: extra_trees.py From mljar-supervised with MIT License | 6 votes |
def __init__(self, params): super(ExtraTreesAlgorithm, self).__init__(params) logger.debug("ExtraTreesAlgorithm.__init__") self.library_version = sklearn.__version__ self.trees_in_step = additional.get("trees_in_step", 100) self.max_steps = additional.get("max_steps", 50) self.early_stopping_rounds = additional.get("early_stopping_rounds", 50) self.model = ExtraTreesClassifier( n_estimators=self.trees_in_step, criterion=params.get("criterion", "gini"), max_features=params.get("max_features", 0.6), min_samples_split=params.get("min_samples_split", 30), warm_start=True, n_jobs=-1, random_state=params.get("seed", 1), )
Example #7
Source File: random_forest.py From mljar-supervised with MIT License | 6 votes |
def __init__(self, params): super(RandomForestAlgorithm, self).__init__(params) logger.debug("RandomForestAlgorithm.__init__") self.library_version = sklearn.__version__ self.trees_in_step = additional.get("trees_in_step", 5) self.max_steps = additional.get("max_steps", 3) self.early_stopping_rounds = additional.get("early_stopping_rounds", 50) self.model = RandomForestClassifier( n_estimators=self.trees_in_step, criterion=params.get("criterion", "gini"), max_features=params.get("max_features", 0.8), min_samples_split=params.get("min_samples_split", 4), warm_start=True, n_jobs=-1, random_state=params.get("seed", 1), )
Example #8
Source File: random_forest.py From mljar-supervised with MIT License | 6 votes |
def __init__(self, params): super(RandomForestRegressorAlgorithm, self).__init__(params) logger.debug("RandomForestRegressorAlgorithm.__init__") self.library_version = sklearn.__version__ self.trees_in_step = regression_additional.get("trees_in_step", 5) self.max_steps = regression_additional.get("max_steps", 3) self.early_stopping_rounds = regression_additional.get( "early_stopping_rounds", 50 ) self.model = RandomForestRegressor( n_estimators=self.trees_in_step, criterion=params.get("criterion", "mse"), max_features=params.get("max_features", 0.8), min_samples_split=params.get("min_samples_split", 4), warm_start=True, n_jobs=-1, random_state=params.get("seed", 1), )
Example #9
Source File: RobustScaler.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def __init__(self, options): self.handle_options(options) out_params = convert_params( options.get('params', {}), bools=['with_centering', 'with_scaling'], strs=['quantile_range'], ) if StrictVersion(sklearn_version) < StrictVersion(quantile_range_required_version) and 'quantile_range' in out_params.keys(): out_params.pop('quantile_range') msg = 'The quantile_range option is ignored in this version of scikit-learn ({}): version {} or higher required' msg = msg.format(sklearn_version, quantile_range_required_version) messages.warn(msg) if 'quantile_range' in out_params.keys(): try: out_params['quantile_range'] = tuple(int(i) for i in out_params['quantile_range'].split('-')) assert len(out_params['quantile_range']) == 2 except: raise RuntimeError('Syntax Error: quantile_range requires a range, e.g., quantile_range=25-75') self.estimator = _RobustScaler(**out_params)
Example #10
Source File: configuration.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def set_configuration(): # set python version config.ExternalDepFound('python', '.'.join([str(x) for x in sys.version_info])) version = mdp.__version__ if mdp.__revision__: version += ', ' + mdp.__revision__ config.ExternalDepFound('mdp', version) # parallel python dependency try: import pp # set pp secret if not there already # (workaround for debian patch to pp that disables pp's default password) pp_secret = os.getenv('MDP_PP_SECRET') or 'mdp-pp-support-password' # module 'user' has been deprecated since python 2.6 and deleted # completely as of python 3.0. # Basically pp can not work on python 3 at the moment. import user if not hasattr(user, 'pp_secret'): user.pp_secret = pp_secret except ImportError, exc: config.ExternalDepFailed('parallel_python', exc)
Example #11
Source File: MLPClassifier.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def raise_import_error(): msg = 'MLP Classifier is not available in this version of scikit-learn ({}): version {} or higher required' msg = msg.format(sklearn_version, required_version) raise ImportError(msg)
Example #12
Source File: MLPClassifier.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def has_required_version(): return StrictVersion(sklearn_version) >= StrictVersion(required_version)
Example #13
Source File: driver_tests.py From tpot with GNU Lesser General Public License v3.0 | 5 votes |
def test_driver_5(): """Assert that the tpot_driver() in TPOT driver outputs normal result with exported python file and verbosity = 0.""" # Catch FutureWarning https://github.com/scikit-learn/scikit-learn/issues/11785 if (np.__version__ >= LooseVersion("1.15.0") and sklearn.__version__ <= LooseVersion("0.20.0")): raise nose.SkipTest("Warning raised by scikit-learn") args_list = [ 'tests/tests.csv', '-is', ',', '-target', 'class', '-o', 'test_export.py', '-g', '1', '-p', '2', '-cv', '3', '-s', '42', '-config', 'TPOT light', '-v', '0' ] args = _get_arg_parser().parse_args(args_list) with captured_output() as (out, err): tpot_driver(args) ret_stdout = out.getvalue() assert ret_stdout == "" assert path.isfile("test_export.py") remove("test_export.py") # clean up exported file
Example #14
Source File: _svm_0_23.py From daal4py with Apache License 2.0 | 5 votes |
def _compute_gamma(*args): global no_older_than_0_20_3 global no_older_than_0_22 if no_older_than_0_20_3 is None: no_older_than_0_20_3 = (LooseVersion(sklearn_version) >= LooseVersion("0.20.3")) if no_older_than_0_22 is None: no_older_than_0_22 = (LooseVersion(sklearn_version) < LooseVersion("0.22")) return __compute_gamma__(*args, use_var=no_older_than_0_20_3, deprecation=no_older_than_0_22)
Example #15
Source File: decision_forest.py From daal4py with Apache License 2.0 | 5 votes |
def predict(self, X): if LooseVersion(sklearn_version) >= LooseVersion("0.22"): check_is_fitted(self) else: check_is_fitted(self, 'daal_model_') return self._daal_predict(X)
Example #16
Source File: decision_forest.py From daal4py with Apache License 2.0 | 5 votes |
def _more_tags(self): if LooseVersion(sklearn_version) >= LooseVersion("0.22"): return {'multioutput': False} else: return dict()
Example #17
Source File: decision_forest.py From daal4py with Apache License 2.0 | 5 votes |
def estimators_(self): if hasattr(self, '_cached_estimators_'): if self._cached_estimators_: return self._cached_estimators_ if LooseVersion(sklearn_version) >= LooseVersion("0.22"): check_is_fitted(self) else: check_is_fitted(self, 'daal_model_') # convert model to estimators est = DecisionTreeRegressor( criterion=self.criterion, max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, min_weight_fraction_leaf=self.min_weight_fraction_leaf, max_features=self.max_features, max_leaf_nodes=self.max_leaf_nodes, min_impurity_decrease=self.min_impurity_decrease, min_impurity_split=self.min_impurity_split, random_state=None) # we need to set est.tree_ field with Trees constructed from Intel(R) DAAL solution estimators_ = [] for i in range(self.n_estimators): est_i = clone(est) est_i.n_features_ = self.n_features_ est_i.n_outputs_ = self.n_outputs_ tree_i_state_class = daal4py.getTreeState(self.daal_model_, i) tree_i_state_dict = { 'max_depth' : tree_i_state_class.max_depth, 'node_count' : tree_i_state_class.node_count, 'nodes' : tree_i_state_class.node_ar, 'values': tree_i_state_class.value_ar } est_i.tree_ = Tree(self.n_features_, np.array([1], dtype=np.intp), self.n_outputs_) est_i.tree_.__setstate__(tree_i_state_dict) estimators_.append(est_i) return estimators_
Example #18
Source File: decision_forest.py From daal4py with Apache License 2.0 | 5 votes |
def _daal_predict(self, X): if LooseVersion(sklearn_version) >= LooseVersion("0.22"): check_is_fitted(self) else: check_is_fitted(self, 'daal_model_') X = self._validate_X_predict(X) dfr_alg = daal4py.decision_forest_regression_prediction(fptype='float') dfr_predictionResult = dfr_alg.compute(X, self.daal_model_) pred = dfr_predictionResult.prediction return pred.ravel()
Example #19
Source File: _svm_0_22.py From daal4py with Apache License 2.0 | 5 votes |
def _compute_gamma(*args): global no_older_than_0_20_3 global no_older_than_0_22 if no_older_than_0_20_3 is None: no_older_than_0_20_3 = (LooseVersion(sklearn_version) >= LooseVersion("0.20.3")) if no_older_than_0_22 is None: no_older_than_0_22 = (LooseVersion(sklearn_version) < LooseVersion("0.22")) return __compute_gamma__(*args, use_var=no_older_than_0_20_3, deprecation=no_older_than_0_22)
Example #20
Source File: fixes.py From fairlearn with MIT License | 5 votes |
def get_sklearn_expected_1d_message(): # Handle change of message for sklearn if sklearn.__version__ < "0.23.0": expected_message = "bad input shape" else: expected_message = "y should be a 1d array" return expected_message
Example #21
Source File: _svm_0_21.py From daal4py with Apache License 2.0 | 5 votes |
def _compute_gamma(*args): global no_older_than_0_20_3 global no_older_than_0_22 if no_older_than_0_20_3 is None: no_older_than_0_20_3 = (LooseVersion(sklearn_version) >= LooseVersion("0.20.3")) if no_older_than_0_22 is None: no_older_than_0_22 = (LooseVersion(sklearn_version) < LooseVersion("0.22")) return __compute_gamma__(*args, use_var=no_older_than_0_20_3, deprecation=no_older_than_0_22)
Example #22
Source File: sphinx_skl2onnx_extension.py From sklearn-onnx with MIT License | 5 votes |
def run(self): from sklearn import __version__ as skver found = missing_ops() nbconverters = 0 supported = set(build_sklearn_operator_name_map()) rows = [".. list-table::", " :header-rows: 1", " :widths: 10 7 4", "", " * - Name", " - Package", " - Supported"] for name, sub, cl in found: rows.append(" * - " + name) rows.append(" - " + sub) if cl in supported: rows.append(" - Yes") nbconverters += 1 else: rows.append(" -") rows.append("") rows.append("scikit-learn's version is **{0}**.".format(skver)) rows.append("{0}/{1} models are covered.".format(nbconverters, len(found))) node = nodes.container() st = StringList(rows) nested_parse_with_titles(self.state, st, node) main = nodes.container() main += node return [main]
Example #23
Source File: test_metrics.py From python-dlpy with Apache License 2.0 | 5 votes |
def test_average_precision_score(self): try: from sklearn.metrics import average_precision_score as skaps except: unittest.TestCase.skipTest(self, "sklearn is not found in the libraries") try: from distutils.version import StrictVersion except: unittest.TestCase.skipTest(self, "StrictVersion issue") import sklearn if StrictVersion(sklearn.__version__) < StrictVersion('0.20.3'): unittest.TestCase.skipTest(self, "There is an API change in sklearn, " "this test is skipped with old versions of sklearn") skaps_score1 = skaps(self.local_class3.target, self.local_class3.p_1, pos_label=1) dlpyaps_score1 = average_precision_score('target', 'p_1', pos_label=1, castable=self.class_table3, cutstep=0.0001) dlpyaps_score1_inter = average_precision_score(self.class_table3.target,self.class_table3.p_1, pos_label=1, interpolate=True) self.assertAlmostEqual(skaps_score1, dlpyaps_score1, places=4) skaps_score2 = skaps(self.local_class3.target, self.local_class4.p_1, pos_label=1) dlpyaps_score2 = average_precision_score(self.class_table3.target,self.class_table4.p_1, pos_label=1, cutstep=0.0001, id_vars=['id1', 'id2']) self.assertAlmostEqual(skaps_score2, dlpyaps_score2, places=4)
Example #24
Source File: ABuFixes.py From abu with GNU General Public License v3.0 | 5 votes |
def _parse_version(version_string): """ 根据库中的__version__字段,转换为tuple,eg. '1.11.3'->(1, 11, 3) :param version_string: __version__字符串对象 :return: tuple 对象 """ version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: version.append(x) return tuple(version)
Example #25
Source File: matplot_helper.py From CVPR_paper_search_tool with BSD 3-Clause "New" or "Revised" License | 5 votes |
def show_lib_versions(): print('Python Interpreter version:%s' % sys.version[:3]) print('numpy version', np.__version__) print('sklearn version', sklearn.__version__)
Example #26
Source File: TimeSeriesModel.py From pyaf with BSD 3-Clause "New" or "Revised" License | 5 votes |
def getVersions(self): import os, platform, pyaf lVersionDict = {}; lVersionDict["PyAF_version"] = pyaf.__version__; lVersionDict["system_platform"] = platform.platform(); lVersionDict["system_uname"] = platform.uname(); lVersionDict["system_processor"] = platform.processor(); lVersionDict["python_implementation"] = platform.python_implementation(); lVersionDict["python_version"] = platform.python_version(); import sklearn lVersionDict["sklearn_version"] = sklearn.__version__; import pandas as pd lVersionDict["pandas_version"] = pd.__version__; import numpy as np lVersionDict["numpy_version"] = np.__version__; import scipy as sc lVersionDict["scipy_version"] = sc.__version__; import matplotlib lVersionDict["matplotlib_version"] = matplotlib.__version__ import pydot lVersionDict["pydot_version"] = pydot.__version__ import sqlalchemy lVersionDict["sqlalchemy_version"] = sqlalchemy.__version__ # print([(k, lVersionDict[k]) for k in sorted(lVersionDict)]); return lVersionDict;
Example #27
Source File: display_version_info.py From pyaf with BSD 3-Clause "New" or "Revised" License | 5 votes |
def getVersions(): import os, platform, pyaf lVersionDict = {}; lVersionDict["PyAF_version"] = pyaf.__version__; lVersionDict["system_platform"] = platform.platform(); lVersionDict["system_uname"] = platform.uname(); lVersionDict["system_processor"] = platform.processor(); lVersionDict["python_implementation"] = platform.python_implementation(); lVersionDict["python_version"] = platform.python_version(); import sklearn lVersionDict["sklearn_version"] = sklearn.__version__; import pandas as pd lVersionDict["pandas_version"] = pd.__version__; import numpy as np lVersionDict["numpy_version"] = np.__version__; import scipy as sc lVersionDict["scipy_version"] = sc.__version__; import matplotlib lVersionDict["matplotlib_version"] = matplotlib.__version__ import pydot lVersionDict["pydot_version"] = pydot.__version__ import sqlalchemy lVersionDict["sqlalchemy_version"] = sqlalchemy.__version__ print([(k, lVersionDict[k]) for k in sorted(lVersionDict)]); return lVersionDict;
Example #28
Source File: validation.py From sk-dist with Apache License 2.0 | 5 votes |
def _check_is_fitted(estimator, attributes=None): from sklearn import __version__ if __version__ < '0.22': return check_is_fitted(estimator, attributes) else: return check_is_fitted(estimator)
Example #29
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_pickle_version_warning_is_issued_upon_different_version(): iris = datasets.load_iris() tree = TreeBadVersion().fit(iris.data, iris.target) tree_pickle_other = pickle.dumps(tree) message = pickle_error_message.format(estimator="TreeBadVersion", old_version="something", current_version=sklearn.__version__) assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other)
Example #30
Source File: test_base.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle(): iris = datasets.load_iris() # TreeNoVersion has no getstate, like pre-0.18 tree = TreeNoVersion().fit(iris.data, iris.target) tree_pickle_noversion = pickle.dumps(tree) assert_false(b"version" in tree_pickle_noversion) message = pickle_error_message.format(estimator="TreeNoVersion", old_version="pre-0.18", current_version=sklearn.__version__) # check we got the warning about using pre-0.18 pickle assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_noversion)