Python h5py.File() Examples
The following are 30
code examples of h5py.File().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
h5py
, or try the search function
.
Example #1
Source File: data_prep_util.py From pointnet-registration-framework with MIT License | 6 votes |
def save_h5_data_label_normal(h5_filename, data, label, normal, data_dtype='float32', label_dtype='uint8', noral_dtype='float32'): h5_fout = h5py.File(h5_filename) h5_fout.create_dataset( 'data', data=data, compression='gzip', compression_opts=4, dtype=data_dtype) h5_fout.create_dataset( 'normal', data=normal, compression='gzip', compression_opts=4, dtype=normal_dtype) h5_fout.create_dataset( 'label', data=label, compression='gzip', compression_opts=1, dtype=label_dtype) h5_fout.close() # Write numpy array data and label to h5_filename
Example #2
Source File: leike_ensslin_2019.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def __init__(self, map_fname=None): """ Args: map_fname (Optional[str]): Filename of the map. Defaults to :obj:`None`, meaning that the default location is used. """ if map_fname is None: map_fname = os.path.join( data_dir(), 'leike_ensslin_2019', 'simple_cube.h5' ) self._data = {} with h5py.File(map_fname) as f: self._data['mean'] = f['mean'][:] self._data['std'] = f['std'][:] self._shape = self._data['mean'].shape
Example #3
Source File: xianci.py From pyscf with Apache License 2.0 | 6 votes |
def write_integrals(xci, orb): mol = xci.mol orbsym = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, orb) h1e = reduce(numpy.dot, (orb.T, xci.get_hcore(), orb)) norb = orb.shape[1] if xci._eri is not None: h2e = ao2mo.restore(1, ao2mo.full(xci._eri, orb), norb) else: h2e = ao2mo.restore(1, ao2mo.full(mol, orb), norb) with h5py.File(xci.integralfile, 'w') as f: f['h1e'] = h1e f['h2e'] = h2e f['norb' ] = numpy.array(norb, dtype=numpy.int32) f['group' ] = mol.groupname f['orbsym'] = numpy.asarray(orbsym, dtype=numpy.int32) f['ecore' ] = mol.energy_nuc()
Example #4
Source File: hcp.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def download(self, sid): ''' ny.data['hcp'].download(sid) downloads all the data understood by neuropythy for the given HCP subject id; the data are downloaded from the Amazon S3 into the path given by the 'hcp_auto_path' config item then returns a list of the downloaded files. ''' # we can do this in quite a sneaky way: get the subject, get their filemap, force all the # paths in the subject to be downloaded using the pseudo-path, return the cache path! sub = self.subjects[sid] fmap = sub.meta_data['file_map'] ppath = fmap.path fls = [] logging.info('Downloading HCP subject %s structure data...' % (sid,)) for fl in six.iterkeys(fmap.data_files): logging.info(' * Downloading file %s for subject %s' % (fl, sid)) try: fls.append(ppath.local_path(fl)) except ValueError as e: if len(e.args) != 1 or not e.args[0].startswith('getpath:'): raise else: logging.info(' (File %s not found for subject %s)' % (fl, sid)) logging.info('Subject %s donwnload complete!' % (sid,)) return fls # we wrap this in a lambda so that it gets loaded when requested (in case the config changes between # when this gets run and when the dataset gets requested)
Example #5
Source File: uintermediates_slow.py From pyscf with Apache License 2.0 | 6 votes |
def cc_Wvvvv(t1,t2,eris): tau = make_tau(t2,t1,t1) #eris_vovv = np.array(eris.ovvv).transpose(1,0,3,2) #tmp = einsum('mb,amef->abef',t1,eris_vovv) #Wabef = eris.vvvv - tmp + tmp.transpose(1,0,2,3) #Wabef += 0.25*einsum('mnab,mnef->abef',tau,eris.oovv) if t1.dtype == np.complex: ds_type = 'c16' else: ds_type = 'f8' _tmpfile1 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fimd = h5py.File(_tmpfile1.name) nocc, nvir = t1.shape Wabef = fimd.create_dataset('vvvv', (nvir,nvir,nvir,nvir), ds_type) for a in range(nvir): Wabef[a] = eris.vvvv[a] Wabef[a] -= einsum('mb,mfe->bef',t1,eris.ovvv[:,a,:,:]) Wabef[a] += einsum('m,mbfe->bef',t1[:,a],eris.ovvv) Wabef[a] += 0.25*einsum('mnb,mnef->bef',tau[:,:,a,:],eris.oovv) return Wabef
Example #6
Source File: uintermediates_slow.py From pyscf with Apache License 2.0 | 6 votes |
def Wvvvv(t1,t2,eris): tau = make_tau(t2,t1,t1) #Wabef = cc_Wvvvv(t1,t2,eris) + 0.25*einsum('mnab,mnef->abef',tau,eris.oovv) if t1.dtype == np.complex: ds_type = 'c16' else: ds_type = 'f8' _tmpfile1 = tempfile.NamedTemporaryFile(dir=lib.param.TMPDIR) fimd = h5py.File(_tmpfile1.name) nocc, nvir = t1.shape Wabef = fimd.create_dataset('vvvv', (nvir,nvir,nvir,nvir), ds_type) #_cc_Wvvvv = cc_Wvvvv(t1,t2,eris) for a in range(nvir): #Wabef[a] = _cc_Wvvvv[a] Wabef[a] = eris.vvvv[a] Wabef[a] -= einsum('mb,mfe->bef',t1,eris.ovvv[:,a,:,:]) Wabef[a] += einsum('m,mbfe->bef',t1[:,a],eris.ovvv) #Wabef[a] += 0.25*einsum('mnb,mnef->bef',tau[:,:,a,:],eris.oovv) #Wabef[a] += 0.25*einsum('mnb,mnef->bef',tau[:,:,a,:],eris.oovv) Wabef[a] += 0.5*einsum('mnb,mnef->bef',tau[:,:,a,:],eris.oovv) return Wabef
Example #7
Source File: tddft_iter.py From pyscf with Apache License 2.0 | 6 votes |
def load_kernel_method(self, kernel_fname, kernel_format="npy", kernel_path_hdf5=None, **kw): """ Loads from file and initializes .kernel field... Useful? Rewrite?""" if kernel_format == "npy": self.kernel = self.dtype(np.load(kernel_fname)) elif kernel_format == "txt": self.kernel = np.loadtxt(kernel_fname, dtype=self.dtype) elif kernel_format == "hdf5": import h5py if kernel_path_hdf5 is None: raise ValueError("kernel_path_hdf5 not set while trying to read kernel from hdf5 file.") self.kernel = h5py.File(kernel_fname, "r")[kernel_path_hdf5].value else: raise ValueError("Wrong format for loading kernel, must be: npy, txt or hdf5, got " + kernel_format) if len(self.kernel.shape) > 1: raise ValueError("The kernel must be saved in packed format in order to be loaded!") assert self.nprod*(self.nprod+1)//2 == self.kernel.size, "wrong size for loaded kernel: %r %r "%(self.nprod*(self.nprod+1)//2, self.kernel.size) self.kernel_dim = self.nprod
Example #8
Source File: m_restart.py From pyscf with Apache License 2.0 | 6 votes |
def write_rst_h5py(data, filename = None): import h5py if filename is None: filename= 'SCREENED_COULOMB.hdf5' with h5py.File(filename, 'w') as data_file: try: data_file.create_dataset('W_c', data=data) except: print("failed writting data to SCREENED_COULOMB.hdf5") print(type(data)) data_file.close msg = 'Full matrix elements of screened interactions (W_c) stored in {}'.format(filename) return msg
Example #9
Source File: bh.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def __init__(self, bh_dir=None): """ Args: bh_dir (Optional[str]): The directory containing the Burstein & Heiles dust map. Defaults to `None`, meaning that the default directory is used. """ if bh_dir is None: bh_dir = os.path.join(data_dir_default, 'bh') f = h5py.File(os.path.join(bh_dir, 'bh.h5'), 'r') self._hinorth = f['hinorth'][:] self._hisouth = f['hisouth'][:] self._rednorth = f['rednorth'][:] self._redsouth = f['redsouth'][:] f.close()
Example #10
Source File: test_io.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_NDArrayIter_h5py(): if not h5py: return data, labels = _init_NDArrayIter_data('ndarray') try: os.remove('ndarraytest.h5') except OSError: pass with h5py.File('ndarraytest.h5') as f: f.create_dataset('data', data=data) f.create_dataset('label', data=labels) _test_last_batch_handle(f['data'], f['label']) _test_last_batch_handle(f['data'], []) _test_last_batch_handle(f['data']) try: os.remove("ndarraytest.h5") except OSError: pass
Example #11
Source File: utils.py From DOTA_models with Apache License 2.0 | 6 votes |
def read_data(data_fname): """ Read saved data in HDF5 format. Args: data_fname: The filename of the file from which to read the data. Returns: A dictionary whose keys will vary depending on dataset (but should always contain the keys 'train_data' and 'valid_data') and whose values are numpy arrays. """ try: with h5py.File(data_fname, 'r') as hf: data_dict = {k: np.array(v) for k, v in hf.items()} return data_dict except IOError: print("Cannot open %s for reading." % data_fname) raise
Example #12
Source File: samplers.py From cvpr2018-hnd with MIT License | 6 votes |
def shuffle(labels, num_epochs=50, path=None, start_time=time.time()): order_path = '{path}/order_{num_epochs}.h5' \ .format(path=path, num_epochs=num_epochs) if path is not None and os.path.isfile(order_path): with h5py.File(order_path, 'r') as f: order = f['order'][:] else: order = -np.ones([num_epochs, labels.size(0)], dtype=int) for epoch in range(num_epochs): order[epoch] = np.random.permutation(labels.size(0)) print_freq = min([100, (num_epochs-1) // 5 + 1]) print_me = (epoch == 0 or epoch == num_epochs-1 or (epoch+1) % print_freq == 0) if print_me: print('{epoch:4d}/{num_epochs:4d} e; '.format(epoch=epoch+1, num_epochs=num_epochs), end='') print('generate random order; {time:8.3f} s'.format(time=time.time()-start_time)) if path is not None: with h5py.File(order_path, 'w') as f: f.create_dataset('order', data=order, compression='gzip', compression_opts=9) print('random order; {time:8.3f} s'.format(time=time.time()-start_time)) return torch.from_numpy(order)
Example #13
Source File: kccsd_rhf.py From pyscf with Apache License 2.0 | 6 votes |
def read_eom_amplitudes(vec_shape, filename="reom_amplitudes.hdf5", vec=None): task_list = generate_max_task_list(vec_shape) read_success = False return False, None # TODO: find a way to make the amplitudes are consistent # with the signs of the eris/t-amplitudes when restarting print("attempting to read in eom amplitudes from file ", filename) if os.path.isfile(filename): print("reading eom amplitudes from file. shape=", vec_shape) feri = h5py.File(filename, 'r', driver='mpio', comm=MPI.COMM_WORLD) saved_v = feri['v'] if vec is None: vec = np.empty(vec_shape,dtype=saved_v.dtype) assert(saved_v.shape == vec_shape) task_list = generate_max_task_list(vec.shape) for block in task_list: which_slice = [slice(*x) for x in block] vec[tuple(which_slice)] = saved_v[tuple(which_slice)] feri.close() read_success = True if vec is not None and vec_shape[-1] == 1: vec = vec.reshape(vec_shape[:-1]) return read_success, vec
Example #14
Source File: kccsd_rhf.py From pyscf with Apache License 2.0 | 6 votes |
def write_amplitudes(t1, t2, filename="t_amplitudes.hdf5"): task_list = generate_max_task_list(t2.shape) if rank == 0: print("writing t amplitudes to file") feri = h5py.File(filename, 'w') ds_type = t2.dtype out_t1 = feri.create_dataset('t1', t1.shape, dtype=ds_type) out_t2 = feri.create_dataset('t2', t2.shape, dtype=ds_type) task_list = generate_max_task_list(t1.shape) for block in task_list: which_slice = [slice(*x) for x in block] out_t1[tuple(which_slice)] = t1[tuple(which_slice)] task_list = generate_max_task_list(t2.shape) for block in task_list: which_slice = [slice(*x) for x in block] out_t2[tuple(which_slice)] = t2[tuple(which_slice)] feri.close() return
Example #15
Source File: hdf5_loader.py From SSGAN-Tensorflow with MIT License | 6 votes |
def __init__(self, path, ids, name='default', max_examples=None, is_train=True): self._ids = list(ids) self.name = name self.is_train = is_train if max_examples is not None: self._ids = self._ids[:max_examples] filename = 'data.hdf5' file = os.path.join(path, filename) log.info("Reading %s ...", file) self.data = h5py.File(file, 'r') log.info("Reading Done: %s", file)
Example #16
Source File: data_io.py From Kaggler with MIT License | 6 votes |
def save_hdf5(X, y, path): """Save data as a HDF5 file. Args: X (numpy or scipy sparse matrix): Data matrix y (numpy array): Target vector. path (str): Path to the HDF5 file to save data. """ with h5py.File(path, 'w') as f: is_sparse = 1 if sparse.issparse(X) else 0 f['issparse'] = is_sparse f['target'] = y if is_sparse: if not sparse.isspmatrix_csr(X): X = X.tocsr() f['shape'] = np.array(X.shape) f['data'] = X.data f['indices'] = X.indices f['indptr'] = X.indptr else: f['data'] = X
Example #17
Source File: preprocessing.py From IGMC with MIT License | 6 votes |
def load_matlab_file(path_file, name_field): """ load '.mat' files inputs: path_file, string containing the file path name_field, string containig the field name (default='shape') warning: '.mat' files should be saved in the '-v7.3' format """ db = h5py.File(path_file, 'r') ds = db[name_field] try: if 'ir' in ds.keys(): data = np.asarray(ds['data']) ir = np.asarray(ds['ir']) jc = np.asarray(ds['jc']) out = sp.csc_matrix((data, ir, jc)).astype(np.float32) except AttributeError: # Transpose in case is a dense matrix because of the row- vs column- major ordering between python and matlab out = np.asarray(ds).astype(np.float32).T db.close() return out
Example #18
Source File: cifar10.py From Generative-Latent-Optimization-Tensorflow with MIT License | 6 votes |
def __init__(self, ids, name='default', max_examples=None, is_train=True): self._ids = list(ids) self.name = name self.is_train = is_train if max_examples is not None: self._ids = self._ids[:max_examples] filename = 'data.hdf5' file = os.path.join(__PATH__, filename) log.info("Reading %s ...", file) try: self.data = h5py.File(file, 'r+') except: raise IOError('Dataset not found. Please make sure the dataset was downloaded.') log.info("Reading Done: %s", file)
Example #19
Source File: svhn.py From Generative-Latent-Optimization-Tensorflow with MIT License | 6 votes |
def __init__(self, ids, name='default', max_examples=None, is_train=True): self._ids = list(ids) self.name = name self.is_train = is_train if max_examples is not None: self._ids = self._ids[:max_examples] filename = 'data.hdf5' file = os.path.join(__PATH__, filename) log.info("Reading %s ...", file) try: self.data = h5py.File(file, 'r+') except: raise IOError('Dataset not found. Please make sure the dataset was downloaded.') log.info("Reading Done: %s", file)
Example #20
Source File: xianci.py From pyscf with Apache License 2.0 | 6 votes |
def write_integrals(xci, orb): mol = xci.mol orbsym = symm.label_orb_symm(mol, mol.irrep_id, mol.symm_orb, orb) h1e = reduce(numpy.dot, (orb.T, xci.get_hcore(), orb)) norb = orb.shape[1] if xci._eri is not None: h2e = ao2mo.restore(1, ao2mo.full(xci._eri, orb), norb) else: h2e = ao2mo.restore(1, ao2mo.full(mol, orb), norb) with h5py.File(xci.integralfile, 'w') as f: f['h1e'] = h1e f['h2e'] = h2e f['norb' ] = numpy.array(norb, dtype=numpy.int32) f['group' ] = mol.groupname f['orbsym'] = numpy.asarray(orbsym, dtype=numpy.int32) f['ecore' ] = mol.energy_nuc()
Example #21
Source File: Forecaster.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, n_pop=4, **specs): FortneyMarleyCahoyMix1.__init__(self, **specs) # number of category self.n_pop = int(n_pop) # read forecaster parameter file downloadsdir = get_downloads_dir() filename = 'fitting_parameters.h5' parampath = os.path.join(downloadsdir, filename) if not os.path.exists(parampath) and os.access(downloadsdir, os.W_OK|os.X_OK): fitting_url = 'https://raw.github.com/dsavransky/forecaster/master/fitting_parameters.h5' self.vprint("Fetching Forecaster fitting parameters from %s to %s" % (fitting_url, parampath)) try: urlretrieve(fitting_url, parampath) except: self.vprint("Error: Remote fetch failed. Fetch manually or see install instructions.") assert os.path.exists(parampath), 'fitting_parameters.h5 must exist in /.EXOSIMS/downloads' h5 = h5py.File(parampath, 'r') self.all_hyper = h5['hyper_posterior'][:] h5.close()
Example #22
Source File: leike_ensslin_2019.py From dustmaps with GNU General Public License v2.0 | 6 votes |
def fetch(clobber=False): """ Downloads the 3D dust map of Leike & Ensslin (2019). Args: clobber (Optional[bool]): If ``True``, any existing file will be overwritten, even if it appears to match. If ``False`` (the default), ``fetch()`` will attempt to determine if the dataset already exists. This determination is not 100\% robust against data corruption. """ dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019') fname = os.path.join(dest_dir, 'simple_cube.h5') # Check if the FITS table already exists md5sum = 'f54e01c253453117e3770575bed35078' if (not clobber) and fetch_utils.check_md5sum(fname, md5sum): print('File appears to exist already. Call `fetch(clobber=True)` ' 'to force overwriting of existing file.') return # Download from the server url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1' fetch_utils.download_and_verify(url, md5sum, fname)
Example #23
Source File: helper.py From pointnet-registration-framework with MIT License | 5 votes |
def read_h5(file_name): import h5py f = h5py.File(file_name, 'r') templates = np.array(f.get('templates')) f.close() return templates
Example #24
Source File: generate_dataset.py From pointnet-registration-framework with MIT License | 5 votes |
def load_h5_data_label_seg(self, h5_filename): f = h5py.File(h5_filename) data = f['data'][:] label = f['label'][:] seg = f['pid'][:] return (data, label, seg)
Example #25
Source File: data_prep_util.py From pointnet-registration-framework with MIT License | 5 votes |
def load_h5(h5_filename): f = h5py.File(h5_filename) data = f['data'][:] label = f['label'][:] return (data, label) # ---------------------------------------------------------------- # Following are the helper functions to load save/load PLY files # ---------------------------------------------------------------- # Load PLY file
Example #26
Source File: helper.py From pointnet-registration-framework with MIT License | 5 votes |
def read_noise_data(data_dict): import h5py f = h5py.File(os.path.join('data',data_dict,'noise_data.h5'), 'r') templates = np.array(f.get('templates')) sources = np.array(f.get('sources')) f.close() return templates, sources
Example #27
Source File: data_prep_util.py From pointnet-registration-framework with MIT License | 5 votes |
def load_h5_data_label_seg(h5_filename): f = h5py.File(h5_filename) data = f['data'][:] label = f['label'][:] seg = f['pid'][:] return (data, label, seg) # Read numpy array data and label from h5_filename
Example #28
Source File: models.py From gandlf with MIT License | 5 votes |
def save_model(model, filepath, overwrite=True): def get_json_type(obj): if hasattr(obj, 'get_config'): return {'class_name': obj.__class__.__name__, 'config': obj.get_config()} if type(obj).__module__ == np.__name__: return obj.item() if callable(obj) or type(obj).__name__ == type.__name__: return obj.__name__ raise TypeError('Not JSON Serializable:', obj) import h5py from keras import __version__ as keras_version if not overwrite and os.path.isfile(filepath): proceed = keras.models.ask_to_proceed_with_overwrite(filepath) if not proceed: return f = h5py.File(filepath, 'w') f.attrs['keras_version'] = str(keras_version).encode('utf8') f.attrs['generator_config'] = json.dumps({ 'class_name': model.discriminator.__class__.__name__, 'config': model.generator.get_config(), }, default=get_json_type).encode('utf8') f.attrs['discriminator_config'] = json.dumps({ 'class_name': model.discriminator.__class__.__name__, 'config': model.discriminator.get_config(), }, default=get_json_type).encode('utf8') generator_weights_group = f.create_group('generator_weights') discriminator_weights_group = f.create_group('discriminator_weights') model.generator.save_weights_to_hdf5_group(generator_weights_group) model.discriminator.save_weights_to_hdf5_group(discriminator_weights_group) f.flush() f.close()
Example #29
Source File: m_restart.py From pyscf with Apache License 2.0 | 5 votes |
def read_rst_h5py (filename=None): import h5py ,os if filename is None: path = os.getcwd() filename =find('*.hdf5', path) #filename= 'SCREENED_COULOMB.hdf5' with h5py.File(filename, 'r') as f: #print("Keys: %s" % f.keys()) a_group_key = list(f.keys())[0] # Get the data data = list(f[a_group_key]) msg = 'RESTART: Full matrix elements of screened interactions (W_c) was read from {}'.format(filename) return data, msg
Example #30
Source File: generate_dataset.py From pointnet-registration-framework with MIT License | 5 votes |
def store_h5(templates, dict_name): # templates: Array of templates (BxNx3) # dict_name: Dictionary to store data. if not os.path.exists(os.path.join('data',dict_name)): os.mkdir(os.path.join('data',dict_name)) file_names_txt = open(os.path.join('data',dict_name,'files.txt'),'w') # Store names of files in txt file to read data. file_name = os.path.join('data',dict_name,'templates.h5') file_names_txt.write(file_name) f = h5py.File(file_name,'w') f.create_dataset('templates',data=templates) f.close() file_names_txt.close()