Python pyximport.install() Examples
The following are 8
code examples of pyximport.install().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pyximport
, or try the search function
.
Example #1
Source File: ppmigen.py From socialsent with Apache License 2.0 | 6 votes |
def run(count_path, out_path, smooth=0, cds=True, normalize=False, neg=1): counts = create_representation("Explicit", count_path, normalize=False) old_mat = counts.m index = counts.wi smooth = old_mat.sum() * smooth # getting marginal probs row_probs = old_mat.sum(1) + smooth col_probs = old_mat.sum(0) + smooth if cds: col_probs = np.power(col_probs, 0.75) row_probs = row_probs / row_probs.sum() col_probs = col_probs / col_probs.sum() # building PPMI matrix ppmi_mat = make_ppmi_mat(old_mat, row_probs, col_probs, smooth, neg=neg, normalize=normalize) import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) from representations import sparse_io sparse_io.export_mat_eff(ppmi_mat.row, ppmi_mat.col, ppmi_mat.data, out_path + ".bin") util.write_pickle(index, out_path + "-index.pkl")
Example #2
Source File: 比较速度.py From Python_Master_Courses with GNU General Public License v3.0 | 5 votes |
def main(): import time # 启动pyx编译器 import pyximport pyximport.install() # Cython的素数算法实现 import primesCy # Python的素数算法实现 import primes print("Cython:") t1 = time.time() print(primesCy.primes(500)) t2 = time.time() print("Cython time: %s" % (t2 - t1)) print("") print("Python") t1 = time.time() print(primes.primes(500)) t2 = time.time() print("Python time: %s" % (t2 - t1))
Example #3
Source File: umr.py From spyder-kernels with MIT License | 5 votes |
def activate_cython(self): """ Activate Cython support. We need to run this here because if the support is active, we don't to run the UMR at all. """ run_cython = os.environ.get("SPY_RUN_CYTHON") == "True" if run_cython: try: __import__('Cython') self.has_cython = True except Exception: pass if self.has_cython: # Import pyximport to enable Cython files support for # import statement import pyximport pyx_setup_args = {} # Add Numpy include dir to pyximport/distutils try: import numpy pyx_setup_args['include_dirs'] = numpy.get_include() except Exception: pass # Setup pyximport and enable Cython files reload pyximport.install(setup_args=pyx_setup_args, reload_support=True)
Example #4
Source File: cythonmagic.py From Computable with MIT License | 5 votes |
def cython_pyximport(self, line, cell): """Compile and import a Cython code cell using pyximport. The contents of the cell are written to a `.pyx` file in the current working directory, which is then imported using `pyximport`. This magic requires a module name to be passed:: %%cython_pyximport modulename def f(x): return 2.0*x The compiled module is then imported and all of its symbols are injected into the user's namespace. For most purposes, we recommend the usage of the `%%cython` magic. """ module_name = line.strip() if not module_name: raise ValueError('module name must be given') fname = module_name + '.pyx' with io.open(fname, 'w', encoding='utf-8') as f: f.write(cell) if 'pyximport' not in sys.modules: import pyximport pyximport.install(reload_support=True) if module_name in self._reloads: module = self._reloads[module_name] reload(module) else: __import__(module_name) module = sys.modules[module_name] self._reloads[module_name] = module self._import_all(module)
Example #5
Source File: matrix_serializer.py From socialsent with Apache License 2.0 | 5 votes |
def load_matrix(f): if not f.endswith('.bin'): f += ".bin" import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) from socialsent.representations import sparse_io return sparse_io.retrieve_mat_as_coo(f).tocsr()
Example #6
Source File: cooccurgen.py From socialsent with Apache License 2.0 | 5 votes |
def run(word_gen, index, window_size, out_file): context = [] pair_counts = Counter() for word in word_gen: context.append(index[word]) if len(context) > window_size * 2 + 1: context.pop(0) pair_counts = _process_context(context, pair_counts, window_size) import pyximport pyximport.install(setup_args={"include_dirs": np.get_include()}) from representations import sparse_io sparse_io.export_mat_from_dict(pair_counts, out_file)
Example #7
Source File: Util.py From PReMVOS with MIT License | 5 votes |
def geo_dist(img, pts): # Import these only on demand since pyximport interferes with pycocotools import pyximport pyximport.install() from ReID_net.datasets.Util import sweep img = np.copy(img) / 255.0 #G = nd.gaussian_gradient_magnitude(img, 1.0) img = cv2.GaussianBlur(img, (3,3), 1.0) #G = cv2.Laplacian(img,cv2.CV_64F) sobelx = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=5) sobely = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=5) sobel_abs = cv2.addWeighted(sobelx, 0.5, sobely, 0.5, 0) sobel_abs = (sobel_abs[:, :, 0] ** 2 + sobel_abs[:, :, 1] ** 2 + sobel_abs[:, :, 2] ** 2) ** (1 / 2.0) #G = (G[:, :, 0] ** 2 + G[:, :, 1] ** 2 + G[:, :, 2] ** 2) ** (1 / 2.0) # c = 1 + G * 200 # c = G / np.max(G) #c=sobel_abs / 255.0 c=1+sobel_abs # plt.imshow(sobel_abs) # plt.colorbar() # plt.show() dt = np.zeros_like(c) dt[:] = 1000 dt[pts] = 0 sweeps = [dt, dt[:, ::-1], dt[::-1], dt[::-1, ::-1]] costs = [c, c[:, ::-1], c[::-1], c[::-1, ::-1]] for i, (a, c) in enumerate(it.cycle(list(zip(sweeps, costs)))): # print i, if sweep.sweep(a, c) < 1.0 or i >= 40: break return dt
Example #8
Source File: detection.py From yolact with MIT License | 4 votes |
def traditional_nms(self, boxes, masks, scores, iou_threshold=0.5, conf_thresh=0.05): import pyximport pyximport.install(setup_args={"include_dirs":np.get_include()}, reload_support=True) from utils.cython_nms import nms as cnms num_classes = scores.size(0) idx_lst = [] cls_lst = [] scr_lst = [] # Multiplying by max_size is necessary because of how cnms computes its area and intersections boxes = boxes * cfg.max_size for _cls in range(num_classes): cls_scores = scores[_cls, :] conf_mask = cls_scores > conf_thresh idx = torch.arange(cls_scores.size(0), device=boxes.device) cls_scores = cls_scores[conf_mask] idx = idx[conf_mask] if cls_scores.size(0) == 0: continue preds = torch.cat([boxes[conf_mask], cls_scores[:, None]], dim=1).cpu().numpy() keep = cnms(preds, iou_threshold) keep = torch.Tensor(keep, device=boxes.device).long() idx_lst.append(idx[keep]) cls_lst.append(keep * 0 + _cls) scr_lst.append(cls_scores[keep]) idx = torch.cat(idx_lst, dim=0) classes = torch.cat(cls_lst, dim=0) scores = torch.cat(scr_lst, dim=0) scores, idx2 = scores.sort(0, descending=True) idx2 = idx2[:cfg.max_num_detections] scores = scores[:cfg.max_num_detections] idx = idx[idx2] classes = classes[idx2] # Undo the multiplication above return boxes[idx] / cfg.max_size, masks[idx], classes, scores