Python cv2.__version__() Examples
The following are 30
code examples of cv2.__version__().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check23_pedigreechart(self): '''PedigreeChart - Can optionally use - NumPy if installed https://github.com/gramps-project/addons-source/blob/master/PedigreeChart/PedigreeChart.py ''' self.append_text("\n") self.render_text("""<b>03. <a href="https://gramps-project.org/wiki""" """/index.php?title=PedigreeChart">""" """Addon:PedigreeChart</a> :</b> """) # Start check try: import numpy numpy_ver = str(numpy.__version__) #print("numpy.__version__ :" + numpy_ver ) # NUMPY_check = True except ImportError: numpy_ver = "Not found" # NUMPY_check = False result = "(NumPy : " + numpy_ver + " )" # End check self.append_text(result) #self.append_text("\n")
Example #2
Source File: siammask_tracker.py From pysot with Apache License 2.0 | 6 votes |
def _mask_post_processing(self, mask): target_mask = (mask > cfg.TRACK.MASK_THERSHOLD) target_mask = target_mask.astype(np.uint8) if cv2.__version__[-5] == '4': contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) else: _, contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnt_area = [cv2.contourArea(cnt) for cnt in contours] if len(contours) != 0 and np.max(cnt_area) > 100: contour = contours[np.argmax(cnt_area)] polygon = contour.reshape(-1, 2) prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) rbox_in_img = prbox else: # empty mask location = cxy_wh_2_rect(self.center_pos, self.size) rbox_in_img = np.array([[location[0], location[1]], [location[0] + location[2], location[1]], [location[0] + location[2], location[1] + location[3]], [location[0], location[1] + location[3]]]) return rbox_in_img
Example #3
Source File: test.py From yolo_v1_tensorflow_guiyu with MIT License | 6 votes |
def draw_result(self, img, result): #输出结果 print("hell") print(len(result)) for i in range(len(result)): x = int(result[i][1]) y = int(result[i][2]) w = int(result[i][3] / 2) h = int(result[i][4] / 2) cv2.rectangle(img, (x - w, y - h), (x + w, y + h), (0, 255, 0), 2) cv2.rectangle(img, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1) lineType = cv2.LINE_AA if cv2.__version__ > '3' else cv2.CV_AA cv2.putText( img, result[i][0] + ' : %.2f' % result[i][5], (x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, lineType)
Example #4
Source File: siam_mask_tracker.py From models with MIT License | 6 votes |
def _mask_post_processing(mask, center_pos, size, track_mask_threshold): target_mask = (mask > track_mask_threshold) target_mask = target_mask.astype(np.uint8) if cv2.__version__[-5] == '4': contours, _ = cv2.findContours(target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) else: _, contours, _ = cv2.findContours( target_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) cnt_area = [cv2.contourArea(cnt) for cnt in contours] if len(contours) != 0 and np.max(cnt_area) > 100: contour = contours[np.argmax(cnt_area)] polygon = contour.reshape(-1, 2) prbox = cv2.boxPoints(cv2.minAreaRect(polygon)) rbox_in_img = prbox else: # empty mask location = cxy_wh_2_rect(center_pos, size) rbox_in_img = np.array([[location[0], location[1]], [location[0] + location[2], location[1]], [location[0] + location[2], location[1] + location[3]], [location[0], location[1] + location[3]]]) return rbox_in_img
Example #5
Source File: stitcher.py From dual-fisheye-video-stitching with MIT License | 6 votes |
def detectAndDescribe(self, image): # check to see if we are using OpenCV 3.X if int(cv2.__version__[0]) >= 3: # detect and extract features from the image descriptor = cv2.xfeatures2d.SIFT_create() (kps, features) = descriptor.detectAndCompute(image, None) # otherwise, we are using OpenCV 2.4.X else: # convert the image to grayscale gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # detect keypoints in the image detector = cv2.FeatureDetector_create("SIFT") kps = detector.detect(gray) # extract features from the image extractor = cv2.DescriptorExtractor_create("SIFT") (kps, features) = extractor.compute(gray, kps) # convert the keypoints from KeyPoint objects to NumPy arrays kps = np.float32([kp.pt for kp in kps]) # return a tuple of keypoints and features return (kps, features)
Example #6
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check_fontconfig(self): ''' The python-fontconfig library is used to support the Genealogical Symbols tab of the Preferences. Without it Genealogical Symbols don't work ''' try: import fontconfig vers = fontconfig.__version__ if vers.startswith("0.5."): result = ("* python-fontconfig " + vers + " (Success version 0.5.x is installed.)") else: result = ("* python-fontconfig " + vers + " (Requires version 0.5.x)") except ImportError: result = "* python-fontconfig Not found, (Requires version 0.5.x)" # End check self.append_text(result) #Optional
Example #7
Source File: PrerequisitesCheckerGramplet.py From addons-source with GNU General Public License v2.0 | 6 votes |
def check6_bsddb3(self): '''bsddb3 - Python Bindings for Oracle Berkeley DB requires Berkeley DB PY_BSDDB3_VER_MIN = (6, 0, 1) # 6.x series at least ''' self.append_text("\n") # Start check try: import bsddb3 as bsddb bsddb_str = bsddb.__version__ # Python adaptation layer # Underlying DB library bsddb_db_str = str(bsddb.db.version()).replace(', ', '.')\ .replace('(', '').replace(')', '') except ImportError: bsddb_str = 'not found' bsddb_db_str = 'not found' result = ("* Berkeley Database library (bsddb3: " + bsddb_db_str + ") (Python-bsddb3 : " + bsddb_str + ")") # End check self.append_text(result)
Example #8
Source File: setup.py From vidgear with Apache License 2.0 | 6 votes |
def test_opencv(): """ This function is workaround to test if correct OpenCV Library version has already been installed on the machine or not. Returns True if previously not installed. """ try: # import OpenCV Binaries import cv2 # check whether OpenCV Binaries are 3.x+ if parse_version(cv2.__version__) < parse_version("3"): raise ImportError( "Incompatible (< 3.0) OpenCV version-{} Installation found on this machine!".format( parse_version(cv2.__version__) ) ) except ImportError: return True return False
Example #9
Source File: tests.py From SimpleCV2 with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_matchSIFTKeyPoints(): try: import cv2 except ImportError: pass return if not "2.4.3" in cv2.__version__: pass return img = Image("lenna") skp, tkp = img.matchSIFTKeyPoints(img) if len(skp) == len(tkp): for i in range(len(skp)): if (skp[i].x == tkp[i].x and skp[i].y == tkp[i].y): pass else: assert False else: assert False
Example #10
Source File: tests.py From SimpleCV2 with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_getFREAKDescriptor(): try: import cv2 except ImportError: pass if '$Rev' in cv2.__version__: pass else: if int(cv2.__version__.replace('.','0'))>=20402: img = Image("lenna") flavors = ["SIFT", "SURF", "BRISK", "ORB", "STAR", "MSER", "FAST", "Dense"] for flavor in flavors: f, d = img.getFREAKDescriptor(flavor) if len(f) == 0: assert False if d.shape[0] != len(f) and d.shape[1] != 64: assert False else: pass pass
Example #11
Source File: tests.py From SimpleCV2 with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_keypoint_extraction(): try: import cv2 except: pass return img1 = Image("../sampleimages/KeypointTemplate2.png") img2 = Image("../sampleimages/KeypointTemplate2.png") img3 = Image("../sampleimages/KeypointTemplate2.png") img4 = Image("../sampleimages/KeypointTemplate2.png") kp1 = img1.findKeypoints() kp2 = img2.findKeypoints(highQuality=True) kp3 = img3.findKeypoints(flavor="STAR") if not cv2.__version__.startswith("$Rev:"): kp4 = img4.findKeypoints(flavor="BRISK") kp4.draw() if len(kp4) == 0: assert False kp1.draw() kp2.draw() kp3.draw() #TODO: Fix FAST binding #~ kp4 = img.findKeypoints(flavor="FAST",min_quality=10) if( len(kp1)==190 and len(kp2)==190 and len(kp3)==37 #~ and len(kp4)==521 ): pass else: assert False results = [img1,img2,img3] name_stem = "test_keypoint_extraction" perform_diff(results,name_stem,tolerance=4.0)
Example #12
Source File: frame_extractor.py From keras-video-classifier with MIT License | 5 votes |
def main(): print(cv2.__version__) data_dir_path = '.././very_large_data' X, Y = scan_and_extract_videos_for_conv2d(data_dir_path) print(X[0].shape)
Example #13
Source File: lung_cancer_utils.py From sql_python_deep_learning with MIT License | 5 votes |
def print_library_version(): print(os.getcwd()) version_pandas = pkg_resources.get_distribution("pandas").version print("Version pandas: {}".format(version_pandas)) print("Version OpenCV: {}".format(cv2.__version__)) version_cntk = pkg_resources.get_distribution("cntk").version print("Version CNTK: {}".format(version_cntk)) cntk.logging.set_trace_level(2) print("Devices used by CNTK: {}".format(cntk.all_devices())) ###################################################################### # for feature generation
Example #14
Source File: utils.py From AMNet with MIT License | 5 votes |
def ge_pkg_versions(): dep_versions = {} cmd = 'cat /proc/driver/nvidia/version' display_driver = run_command(cmd) dep_versions['display'] = display_driver dep_versions['cuda'] = 'NA' cuda_home = '/usr/local/cuda/' if 'CUDA_HOME' in os.environ: cuda_home = os.environ['CUDA_HOME'] cmd = cuda_home+'/version.txt' if os.path.isfile(cmd): cuda_version = run_command('cat '+cmd) dep_versions['cuda'] = cuda_version dep_versions['cudnn'] = torch.backends.cudnn.version() dep_versions['platform'] = platform.platform() dep_versions['python'] = sys.version_info[0] dep_versions['torch'] = torch.__version__ dep_versions['numpy'] = np.__version__ dep_versions['PIL'] = Image.VERSION dep_versions['OpenCV'] = 'NA' if 'cv2' in sys.modules: dep_versions['OpenCV'] = cv2.__version__ dep_versions['torchvision'] = pkg_resources.get_distribution("torchvision").version return dep_versions
Example #15
Source File: train_siammask_refine.py From SiamMask with MIT License | 5 votes |
def collect_env_info(): env_str = get_pretty_env_info() env_str += "\n OpenCV ({})".format(cv2.__version__) return env_str
Example #16
Source File: train_siammask.py From SiamMask with MIT License | 5 votes |
def collect_env_info(): env_str = get_pretty_env_info() env_str += "\n OpenCV ({})".format(cv2.__version__) return env_str
Example #17
Source File: train_siamrpn.py From SiamMask with MIT License | 5 votes |
def collect_env_info(): env_str = get_pretty_env_info() env_str += "\n OpenCV ({})".format(cv2.__version__) return env_str
Example #18
Source File: test_environment.py From image-processing-pipeline with MIT License | 5 votes |
def test_opencv_version(): assert cv2.__version__ >= '4.0'
Example #19
Source File: blob_clustering.py From aggregation with Apache License 2.0 | 5 votes |
def __find_positive_regions__(self,user_ids,markings,dimensions): """ give a set of polygon markings made by people, determine the area(s) in the image which were outlined by enough people. "positive" => true positive as opposed to noise or false positive """ unique_users = set(user_ids) aggregate_polygon_list = [] for i in unique_users: user_polygons = [markings[j] for j,u in enumerate(user_ids) if u == i] template = np.zeros(dimensions,np.uint8) # start by drawing the outline of the area cv2.polylines(template,user_polygons,True,255) # now take the EXTERNAL contour # the docker image has an older version of opencv where findcontours only returns 2 values if cv2.__version__ == '2.4.8': contours, hierarchy = cv2.findContours(template,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) else: im2, contours, hierarchy = cv2.findContours(template,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE) template2 = np.zeros(dimensions,np.uint8) cv2.drawContours(template2,contours,-1,1,-1) aggregate_polygon_list.append(template2) aggregate_polygon = np.sum(aggregate_polygon_list,axis=0,dtype=np.uint8) # the threshold determines the minimum number of people who have outlined an area threshold = int(len(set(user_ids))/2) ret,thresh1 = cv2.threshold(aggregate_polygon,threshold,255,cv2.THRESH_BINARY) return thresh1
Example #20
Source File: VideoCapture.py From IntelligentEdgeHOL with MIT License | 5 votes |
def __init__( self, videoPath = "", verbose = True, videoW = 0, videoH = 0, fontScale = 1.0, inference = True, confidenceLevel = 0.5): self.videoPath = videoPath self.verbose = verbose self.videoW = videoW self.videoH = videoH self.inference = inference self.confidenceLevel = confidenceLevel self.useStream = False self.useMovieFile = False self.frameCount = 0 self.vStream = None self.vCapture = None self.displayFrame = None self.fontScale = float(fontScale) self.captureInProgress = False print("VideoCapture::__init__()") print("OpenCV Version : %s" % (cv2.__version__)) print("===============================================================") print("Initialising Video Capture with the following parameters: ") print(" - Video path : " + self.videoPath) print(" - Video width : " + str(self.videoW)) print(" - Video height : " + str(self.videoH)) print(" - Font Scale : " + str(self.fontScale)) print(" - Inference? : " + str(self.inference)) print(" - ConficenceLevel : " + str(self.confidenceLevel)) print("") self.imageServer = ImageServer(80, self) self.imageServer.start() self.yoloInference = YoloInference(self.fontScale)
Example #21
Source File: common.py From ADL with MIT License | 5 votes |
def get_tf_version_tuple(): """ Return TensorFlow version as a 2-element tuple (for comparison). """ return tuple(map(int, tf.__version__.split('.')[:2]))
Example #22
Source File: main.py From open_model_zoo with Apache License 2.0 | 5 votes |
def print_processing_info(model, launcher, device, tags, dataset): print_info('Processing info:') print_info('model: {}'.format(model)) print_info('launcher: {}'.format(launcher)) if tags: print_info('launcher tags: {}'.format(' '.join(tags))) print_info('device: {}'.format(device.upper())) print_info('dataset: {}'.format(dataset)) print_info('OpenCV version: {}'.format(cv2.__version__))
Example #23
Source File: common.py From tensorpack with Apache License 2.0 | 5 votes |
def get_tf_version_tuple(): """ Return TensorFlow version as a 2-element tuple (for comparison). """ return tuple(map(int, tf.__version__.split('.')[:2]))
Example #24
Source File: sigrecog.py From signature-recognition with MIT License | 5 votes |
def main(): print('OpenCV version {} '.format(cv2.__version__)) current_dir = os.path.dirname(__file__) author = '021' training_folder = os.path.join(current_dir, 'data/training/', author) test_folder = os.path.join(current_dir, 'data/test/', author) training_data = [] for filename in os.listdir(training_folder): img = cv2.imread(os.path.join(training_folder, filename), 0) if img is not None: data = np.array(preprocessor.prepare(img)) data = np.reshape(data, (901, 1)) result = [[0], [1]] if "genuine" in filename else [[1], [0]] result = np.array(result) result = np.reshape(result, (2, 1)) training_data.append((data, result)) test_data = [] for filename in os.listdir(test_folder): img = cv2.imread(os.path.join(test_folder, filename), 0) if img is not None: data = np.array(preprocessor.prepare(img)) data = np.reshape(data, (901, 1)) result = 1 if "genuine" in filename else 0 test_data.append((data, result)) net = network.NeuralNetwork([901, 500, 500, 2]) net.sgd(training_data, 10, 50, 0.01, test_data)
Example #25
Source File: test_environment.py From detectron2-pipeline with MIT License | 5 votes |
def test_opencv_version(): assert cv2.__version__ >= '4.0'
Example #26
Source File: obj_detect_tracking.py From Object_Detection_Tracking with Apache License 2.0 | 5 votes |
def check_args(args): """Check the argument.""" assert args.video_dir is not None assert args.video_lst_file is not None assert args.frame_gap >= 1 if args.get_box_feat: assert args.box_feat_path is not None if not os.path.exists(args.box_feat_path): os.makedirs(args.box_feat_path) #print("cv2 version %s" % (cv2.__version__)
Example #27
Source File: detect_yolo.py From zmMagik with GNU General Public License v2.0 | 5 votes |
def __init__(self,configPath=None, weightPath=None, labelsPath=None, kernel_fill=3): if g.args['gpu'] and not g.args['use_opencv_dnn_cuda']: utils.success_print('Using Darknet GPU model for YOLO') utils.success_print('If you run out of memory, please tweak yolo.cfg') if not g.args['use_opencv_dnn_cuda']: self.m = yolo.SimpleYolo(configPath=configPath, weightPath=weightPath, darknetLib=g.args['darknet_lib'], labelsPath=labelsPath, useGPU=True) else: utils.success_print('Using OpenCV model for YOLO') utils.success_print('If you run out of memory, please tweak yolo.cfg') self.net = cv2.dnn.readNetFromDarknet(configPath, weightPath) self.labels = open(labelsPath).read().strip().split("\n") np.random.seed(42) self.colors = np.random.randint( 0, 255, size=(len(self.labels), 3), dtype="uint8") self.kernel_fill = np.ones((kernel_fill,kernel_fill),np.uint8) if g.args['use_opencv_dnn_cuda'] and g.args['gpu']: (maj,minor,patch) = cv2.__version__.split('.') min_ver = int (maj+minor) if min_ver < 42: utils.fail_print('Not setting CUDA backend for OpenCV DNN') utils.dim_print ('You are using OpenCV version {} which does not support CUDA for DNNs. A minimum of 4.2 is required. See https://www.pyimagesearch.com/2020/02/03/how-to-use-opencvs-dnn-module-with-nvidia-gpus-cuda-and-cudnn/ on how to compile and install openCV 4.2'.format(cv2.__version__)) else: utils.success_print ('Setting CUDA backend for OpenCV. If you did not set your CUDA_ARCH_BIN correctly during OpenCV compilation, you will get errors during detection related to invalid device/make_policy') self.net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) self.net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) utils.success_print('YOLO initialized')
Example #28
Source File: sigrecogtf.py From signature-recognition with MIT License | 5 votes |
def main(): print('OpenCV version {} '.format(cv2.__version__)) current_dir = os.path.dirname(__file__) author = '021' training_folder = os.path.join(current_dir, 'data/training/', author) test_folder = os.path.join(current_dir, 'data/test/', author) training_data = [] training_labels = [] for filename in os.listdir(training_folder): img = cv2.imread(os.path.join(training_folder, filename), 0) if img is not None: data = preprocessor.prepare(img) training_data.append(data) training_labels.append([0, 1] if "genuine" in filename else [1, 0]) test_data = [] test_labels = [] for filename in os.listdir(test_folder): img = cv2.imread(os.path.join(test_folder, filename), 0) if img is not None: data = preprocessor.prepare(img) test_data.append(data) test_labels.append([0, 1] if "genuine" in filename else [1, 0]) sgd(training_data, training_labels, test_data, test_labels) # Softmax Regression Model
Example #29
Source File: webcam.py From facemoji with MIT License | 5 votes |
def show_webcam_and_run(model, emoticons, window_size=None, window_name='webcam', update_time=10): """ Shows webcam image, detects faces and its emotions in real time and draw emoticons over those faces. :param model: Learnt emotion detection model. :param emoticons: List of emotions images. :param window_size: Size of webcam image window. :param window_name: Name of webcam image window. :param update_time: Image update time interval. """ cv2.namedWindow(window_name, WINDOW_NORMAL) if window_size: width, height = window_size cv2.resizeWindow(window_name, width, height) vc = cv2.VideoCapture(0) if vc.isOpened(): read_value, webcam_image = vc.read() else: print("webcam not found") return while read_value: for normalized_face, (x, y, w, h) in find_faces(webcam_image): prediction = model.predict(normalized_face) # do prediction if cv2.__version__ != '3.1.0': prediction = prediction[0] image_to_draw = emoticons[prediction] draw_with_alpha(webcam_image, image_to_draw, (x, y, w, h)) cv2.imshow(window_name, webcam_image) read_value, webcam_image = vc.read() key = cv2.waitKey(update_time) if key == 27: # exit on ESC break cv2.destroyWindow(window_name)
Example #30
Source File: video2images.py From Realtime-Action-Recognition with MIT License | 5 votes |
def get_fps(self): # Find OpenCV version (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.') # With webcam get(CV_CAP_PROP_FPS) does not work. # Let's see for ourselves. # Get video properties if int(major_ver) < 3: fps = self.video.get(cv2.cv.CV_CAP_PROP_FPS) else: fps = self.video.get(cv2.CAP_PROP_FPS) return fps