Python cv2.matchTemplate() Examples
The following are 30
code examples of cv2.matchTemplate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: split_img_generate_data.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 9 votes |
def match_img(image, template, value): """ :param image: 图片 :param template: 模板 :param value: 阈值 :return: 水印坐标 描述:用于获得这幅图片模板对应的位置坐标,用途:校准元素位置信息 """ res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED) threshold = value min_v, max_v, min_pt, max_pt = cv2.minMaxLoc(res) if max_v < threshold: return False if not max_pt[0] in range(10, 40) or max_pt[1] > 20: return False return max_pt
Example #2
Source File: TemplateMatchers.py From lackey with MIT License | 8 votes |
def findAllMatches(self, needle, similarity): """ Find all matches for ``needle`` with confidence better than or equal to ``similarity``. Returns an array of tuples ``(position, confidence)`` if match(es) is/are found, or an empty array otherwise. """ positions = [] method = cv2.TM_CCOEFF_NORMED match = cv2.matchTemplate(self.haystack, self.needle, method) indices = (-match).argpartition(100, axis=None)[:100] # Review the 100 top matches unraveled_indices = numpy.array(numpy.unravel_index(indices, match.shape)).T for location in unraveled_indices: y, x = location confidence = match[y][x] if method == cv2.TM_SQDIFF_NORMED or method == cv2.TM_SQDIFF: if confidence <= 1-similarity: positions.append(((x, y), confidence)) else: if confidence >= similarity: positions.append(((x, y), confidence)) positions.sort(key=lambda x: (x[0][1], x[0][0])) return positions
Example #3
Source File: image_detect_02.py From image-detect with MIT License | 7 votes |
def matchAB(fileA, fileB): # 读取图像数据 imgA = cv2.imread(fileA) imgB = cv2.imread(fileB) # 转换成灰色 grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY) grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY) # 获取图片A的大小 height, width = grayA.shape # 取局部图像,寻找匹配位置 result_window = np.zeros((height, width), dtype=imgA.dtype) for start_y in range(0, height-100, 10): for start_x in range(0, width-100, 10): window = grayA[start_y:start_y+100, start_x:start_x+100] match = cv2.matchTemplate(grayB, window, cv2.TM_CCOEFF_NORMED) _, _, _, max_loc = cv2.minMaxLoc(match) matched_window = grayB[max_loc[1]:max_loc[1]+100, max_loc[0]:max_loc[0]+100] result = cv2.absdiff(window, matched_window) result_window[start_y:start_y+100, start_x:start_x+100] = result plt.imshow(result_window) plt.show()
Example #4
Source File: template_matching.py From dual-fisheye-video-stitching with MIT License | 6 votes |
def main(): src = cv2.imread('src.jpg', cv2.IMREAD_GRAYSCALE) tpl = cv2.imread('tpl.jpg', cv2.IMREAD_GRAYSCALE) result = cv2.matchTemplate(src, tpl, cv2.TM_CCOEFF_NORMED) result = cv2.normalize(result, dst=None, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=-1) minVal, maxVal, minLoc, maxLoc = cv2.minMaxLoc(result) matchLoc = maxLoc draw1 = cv2.rectangle( src, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0) draw2 = cv2.rectangle( result, matchLoc, (matchLoc[0] + tpl.shape[1], matchLoc[1] + tpl.shape[0]), 0, 2, 8, 0) cv2.imshow('draw1', draw1) cv2.imshow('draw2', draw2) cv2.waitKey(0) print src.shape print tpl.shape print result.shape print matchLoc
Example #5
Source File: cal_confidence.py From Airtest with Apache License 2.0 | 6 votes |
def cal_rgb_confidence(img_src_rgb, img_sch_rgb): """同大小彩图计算相似度.""" # BGR三通道心理学权重: weight = (0.114, 0.587, 0.299) src_bgr, sch_bgr = cv2.split(img_src_rgb), cv2.split(img_sch_rgb) # 计算BGR三通道的confidence,存入bgr_confidence: bgr_confidence = [0, 0, 0] for i in range(3): res_temp = cv2.matchTemplate(src_bgr[i], sch_bgr[i], cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res_temp) bgr_confidence[i] = max_val # 加权可信度 weighted_confidence = bgr_confidence[0] * weight[0] + bgr_confidence[1] * weight[1] + bgr_confidence[2] * weight[2] return weighted_confidence
Example #6
Source File: imagesearch.py From python-imagesearch with MIT License | 6 votes |
def imagesearch_count(image, precision=0.9): img_rgb = pyautogui.screenshot() if is_retina: img_rgb.thumbnail((round(img_rgb.size[0] * 0.5), round(img_rgb.size[1] * 0.5))) img_rgb = np.array(img_rgb) img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) template = cv2.imread(image, 0) w, h = template.shape[::-1] res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= precision) count = 0 for pt in zip(*loc[::-1]): # Swap columns and rows # cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2) // Uncomment to draw boxes around found occurrences count = count + 1 # cv2.imwrite('result.png', img_rgb) // Uncomment to write output image with boxes drawn around occurrences return count
Example #7
Source File: imagesearch.py From python-imagesearch with MIT License | 6 votes |
def imagesearcharea(image, x1, y1, x2, y2, precision=0.8, im=None): if im is None: im = region_grabber(region=(x1, y1, x2, y2)) if is_retina: im.thumbnail((round(im.size[0] * 0.5), round(im.size[1] * 0.5))) # im.save('testarea.png') usefull for debugging purposes, this will save the captured region as "testarea.png" img_rgb = np.array(im) img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) template = cv2.imread(image, 0) res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) if max_val < precision: return [-1, -1] return max_loc
Example #8
Source File: compare_photos.py From OpenCV-Python-Tutorial with MIT License | 6 votes |
def compare(i, j, img): for x in range(lenX): if x < i: continue for y in range(lenY): if x <= i and y < j: continue z = mat[x][y] # 图片相似度 y1 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) z1 = cv2.cvtColor(z, cv2.COLOR_BGR2GRAY) # image_difference = get_image_difference(y1, z1) res = cv2.matchTemplate(z1, y1, cv2.TM_CCOEFF_NORMED) # print(i, j, x, y, image_difference) print(i, j, x, y, res) # if abs(image_difference-1)>0.5: # if image_difference < 0.1: # pairs.append((i, j, x, y, image_difference)) if res[0][0] >= 0.8 :#and (i != x and j != y): # 0.9较好 if i ==x and j ==y: continue pairs.append((i, j, x, y, res[0][0])) print('--------')
Example #9
Source File: compare_photos.py From OpenCV-Python-Tutorial with MIT License | 6 votes |
def get_image_difference(image_1, image_2): # 这个函数不行 first_image_hist = cv2.calcHist([image_1], [0], None, [256], [0, 256]) second_image_hist = cv2.calcHist([image_2], [0], None, [256], [0, 256]) img_hist_diff = cv2.compareHist(first_image_hist, second_image_hist, cv2.HISTCMP_BHATTACHARYYA) img_template_probability_match = cv2.matchTemplate(first_image_hist, second_image_hist, cv2.TM_CCOEFF_NORMED)[0][0] img_template_diff = 1 - img_template_probability_match # taking only 10% of histogram diff, since it's less accurate than template method commutative_image_diff = (img_hist_diff / 10) + img_template_diff return commutative_image_diff
Example #10
Source File: general_extract.py From SpaceXtract with MIT License | 6 votes |
def exists(frame, template, thresh): """ Returns True if 'template' is in 'frame' with probability of at least 'thresh' :param frame: A frame :param template: An image to search in 'frame'. :param thresh: The minimum probability required to accept template. :return: If template is in frame """ digit_res = cv2.matchTemplate(frame, template, cv2.TM_CCOEFF_NORMED) loc = np.where(digit_res >= thresh) if len(loc[-1]) == 0: return False for pt in zip(*loc[::-1]): if digit_res[pt[1]][pt[0]] == 1: return False return True
Example #11
Source File: general_extract.py From SpaceXtract with MIT License | 6 votes |
def most_probably_template(image, templates): """ Get the index of the template(in the templates list) which is most likely to be in the image. :param image: Image that contain the template :param templates: A list of templates to search in image :return: the index (in templates) which has the highest probability of being in image """ probability_list = [] for template in templates: res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED) probability_list.append(float(np.max(res))) return probability_list.index(max(probability_list))
Example #12
Source File: tm.py From fgo-bot with MIT License | 6 votes |
def find(self, im: str, threshold: float = None) -> Tuple[int, int]: """ Find the template image on screen and return its top-left coords. Return None if the matching value is less than `threshold`. :param im: the name of the image :param threshold: the threshold of matching. If not given, will be set to the default threshold. :return: the top-left coords of the result. Return (-1, -1) if not found. """ threshold = threshold or self.threshold assert self.screen is not None try: template = self.images[im] except KeyError: logger.error('Unexpected image name {}'.format(im)) return -1, -1 res = cv.matchTemplate(self.screen, template, TM_METHOD) _, max_val, _, max_loc = cv.minMaxLoc(res) logger.debug('max_val = {}, max_loc = {}'.format(max_val, max_loc)) return max_loc if max_val >= threshold else (-1, -1)
Example #13
Source File: tm.py From fgo-bot with MIT License | 6 votes |
def probability(self, im: str) -> float: """ Return the probability of the existence of given image. :param im: the name of the image. :return: the probability (confidence). """ assert self.screen is not None try: template = self.images[im] except KeyError: logger.error('Unexpected image name {}'.format(im)) return 0.0 res = cv.matchTemplate(self.screen, template, TM_METHOD) _, max_val, _, max_loc = cv.minMaxLoc(res) logger.debug('max_val = {}, max_loc = {}'.format(max_val, max_loc)) return max_val
Example #14
Source File: cv_detection_right_hand.py From AI-Robot-Challenge-Lab with MIT License | 6 votes |
def __apply_template_matching(angle, template, image): # Rotate the template template_rotated = __rotate_image_size_corrected(template, angle) # Apply template matching image_templated = cv2.matchTemplate(image, template_rotated, cv2.TM_CCOEFF_NORMED) # Correct template matching image size difference template_rotated_height, template_rotated_width = template_rotated.shape template_half_height = template_rotated_height // 2 template_half_width = template_rotated_width // 2 image_templated_inrange_size_corrected = cv2.copyMakeBorder(image_templated, template_half_height, template_half_height, template_half_width, template_half_width, cv2.BORDER_CONSTANT, value=0) # Calculate maximum match coefficient max_match = numpy.max(image_templated_inrange_size_corrected) return (max_match, angle, template_rotated, image_templated_inrange_size_corrected)
Example #15
Source File: pixelmatch.py From airtest with BSD 3-Clause "New" or "Revised" License | 6 votes |
def locate_img(image, template): img = image.copy() res = cv2.matchTemplate(img, template, method) print res print res.shape cv2.imwrite('image/shape.png', res) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) print cv2.minMaxLoc(res) if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]: top_left = min_loc else: top_left = max_loc h, w = template.shape bottom_right = (top_left[0] + w, top_left[1]+h) cv2.rectangle(img, top_left, bottom_right, 255, 2) cv2.imwrite('image/tt.jpg', img)
Example #16
Source File: dino_api.py From go_dino with GNU General Public License v3.0 | 6 votes |
def find_game_position(self, threshold) -> Dict: monitor = self.shooter.monitors[0] buffer = self.shooter.grab(monitor) image = Image.frombytes('RGB', buffer.size, buffer.rgb).convert('L') image = np.array(image) dino_template = cv2.imread(os.path.join('templates', 'dino.png'), 0) res = cv2.matchTemplate(image, dino_template, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) if len(loc[0]) == 0: dino_template = cv2.imread(os.path.join('templates', 'dino2.png'), 0) res = cv2.matchTemplate(image, dino_template, cv2.TM_CCOEFF_NORMED) loc = np.where(res >= threshold) if len(loc[0]): pt = next(zip(*loc[::-1])) w, h = dino_template.shape[::-1] lw, lh = self.landscape_template.shape[::-1] return dict(monitor, height=lh, left=pt[0], top=pt[1] - lh + h, width=lw) return {}
Example #17
Source File: thresholding.py From smashscan with MIT License | 6 votes |
def match_dmg_templates(self, frame): match_mat, max_val, tl = [None]*10, [0]*10, [(0, 0)]*10 for i in range(0, 10): match_mat[i] = cv2.matchTemplate(frame, self.num_img[0], cv2.TM_CCORR_NORMED, mask=self.num_mask[0]) _, max_val[i], _, tl[i] = cv2.minMaxLoc(match_mat[i]) # print(max_val[0]) br = (tl[0][0] + self.num_w, tl[0][1] + self.num_h) frame = cv2.rectangle(frame, tl[0], br, (255, 255, 255), 2) # Multi-template result searching # _, max_val_1, _, tl_1 = cv2.minMaxLoc(np.array(match_mat)) # print(tl_1) # A number of methods corresponding to the various trackbars available.
Example #18
Source File: generate_test_csv_file.py From 2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement with MIT License | 6 votes |
def match_img(image, template, value): """ :param image: 图片 :param template: 模板 :param value: 阈值 :return: 水印坐标 描述:用于获得这幅图片模板对应的位置坐标,用途:校准元素位置信息 """ res = cv2.matchTemplate(image, template, cv2.TM_CCOEFF_NORMED) threshold = value min_v, max_v, min_pt, max_pt = cv2.minMaxLoc(res) if max_v < threshold: return False if not max_pt[0] in range(10, 40) or max_pt[1] > 20: return False return max_pt
Example #19
Source File: test_debug.py From imgaug with MIT License | 5 votes |
def _find_in_image_avg_diff(cls, find_image, in_image): res = cv2.matchTemplate(in_image, find_image, cv2.TM_SQDIFF) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) top_left = min_loc bottom_right = (top_left[0] + find_image.shape[1], top_left[1] + find_image.shape[0]) image_found = in_image[top_left[1]:bottom_right[1], top_left[0]:bottom_right[0], :] diff = np.abs(image_found.astype(np.float32) - find_image.astype(np.float32)) return np.average(diff)
Example #20
Source File: image.py From uiautomator2 with MIT License | 5 votes |
def template_ssim(image_a, image_b): """ Refs: https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_template_matching/py_template_matching.html """ a = color_bgr2gray(image_a) b = color_bgr2gray(image_b) # template (small) res = cv2.matchTemplate(a, b, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) return max_val
Example #21
Source File: dino_api.py From go_dino with GNU General Public License v3.0 | 5 votes |
def play_game(self, get_command_callback: Callable[[int, int, int], str]) -> int: self.start_game() start = last_compute_speed = last_command_time = time.time() last_distance = self.landscape['width'] speed = 0 last_speeds = [3] * 30 while True: buffer = self.shooter.grab(self.landscape) image = Image.frombytes('RGB', buffer.size, buffer.rgb).convert('L') image = np.array(image) image += np.abs(247 - image[0, self.x2]) roi = image[self.y1:self.y2, self.x1:self.x2] score = int((time.time() - start) * 10) distance, size = self.compute_distance_and_size(roi, self.x2) speed = self.compute_speed(distance, last_distance, speed, last_speeds, last_compute_speed) last_compute_speed = time.time() # Check GAME OVER if distance == last_distance or distance == 0: res = cv2.matchTemplate(image, self.gameover_template, cv2.TM_CCOEFF_NORMED) if np.max(res) > 0.5: return score last_distance = distance if time.time() - last_command_time < 0.6: continue command = get_command_callback(distance, size, speed) if command: last_command_time = time.time() pyautogui.press(command)
Example #22
Source File: fgoFunc.py From FGO-py with MIT License | 5 votes |
def oneBattle(): turn,stage,stageTurn,servant=0,0,0,[0,1,2] while True: if Check(.1).isTurnBegin(): turn+=1 stage,stageTurn,skill,newPortrait=(lambda chk:(lambda x:[x,stageTurn+1if stage==x else 1])(chk.getStage())+[chk.isSkillReady(),chk.getPortrait()])(Check(.2)) if turn==1:stageTotal=check.getStageTotal() else:servant=(lambda m,p:[m+p.index(i)+1if i in p else servant[i]for i in range(3)])(max(servant),[i for i in range(3)if servant[i]<6and cv2.matchTemplate(newPortrait[i],portrait[i],cv2.TM_SQDIFF_NORMED)[0][0]>=.03]) if stageTurn==1:doit('\x69\x68\x67\x66\x65\x64'[dangerPos[stage-1]]+'P',(250,500)) portrait=newPortrait logger.info(f'{turn} {stage} {stageTurn} {servant}') for i,j in((i,j)for i in range(3)if servant[i]<6for j in range(3)if skill[i][j]and skillInfo[servant[i]][j][0]and stage<<4|stageTurn>=min(skillInfo[servant[i]][j][0],stageTotal)<<4|skillInfo[servant[i]][j][1]): doit(('ASD','FGH','JKL')[i][j],(300,)) if skillInfo[servant[i]][j][2]:doit(chr(skillInfo[servant[i]][j][2]+49),(300,)) sleep(1.7) while not Check(.1).isTurnBegin():pass sleep(.16) for i in(i for i in range(3)if stage==min(masterSkill[i][0],stageTotal)and stageTurn==masterSkill[i][1]): doit('Q'+'WER'[i],(300,300)) if masterSkill[i][2]:doit(chr(masterSkill[i][2]+49),(300,)) sleep(1.7) while not Check(.1).isTurnBegin():pass sleep(.16) doit(' ',(2250,)) doit((lambda chk:(lambda c,h:([chr(i+54)for i in sorted((i for i in range(3)if h[i]),key=lambda x:-houguInfo[servant[x]][1])]if any(h)else[chr(j+49)for i in range(3)if c.count(i)>=3for j in range(5)if c[j]==i])+[chr(i+49)for i in sorted(range(5),key=lambda x:(c[x]&2)>>1|(c[x]&1)<<1)])(chk.getABQ(),(lambda h:[servant[i]<6and h[i]and houguInfo[servant[i]][0]and stage>=min(houguInfo[servant[i]][0],stageTotal)for i in range(3)])(chk.isHouguReady())))(Check())[:3],(350,350,10000)) elif check.isBattleFinished(): logger.info('Battle Finished') return True elif check.tapFailed(): logger.warning('Battle Failed') return False
Example #23
Source File: imagesearch.py From python-imagesearch with MIT License | 5 votes |
def imagesearch(image, precision=0.8): im = pyautogui.screenshot() if is_retina: im.thumbnail((round(im.size[0] * 0.5), round(im.size[1] * 0.5))) # im.save('testarea.png') useful for debugging purposes, this will save the captured region as "testarea.png" img_rgb = np.array(im) img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY) template = cv2.imread(image, 0) template.shape[::-1] res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) if max_val < precision: return [-1, -1] return max_loc
Example #24
Source File: fgoFunc.py From FGO-py with MIT License | 5 votes |
def tapOnCmp(self,img,rect=(0,0,1920,1080),delta=.05):return(lambda loc:loc[0]<delta and(base.touch((rect[0]+loc[2][0]+(img.shape[1]>>1),rect[1]+loc[2][1]+(img.shape[0]>>1))),fuse.reset())[1])(cv2.minMaxLoc(cv2.matchTemplate(self.im[rect[1]:rect[3],rect[0]:rect[2]],img,cv2.TM_SQDIFF_NORMED)))
Example #25
Source File: ImageCoordinate.py From roc with MIT License | 5 votes |
def count_occurrence(this): Screenshot.shot() this = this + '.png' img_rgb = cv2.imread(this) template = cv2.imread('playing.png') res = cv2.matchTemplate(img_rgb, template, cv2.TM_SQDIFF_NORMED) threshold = 0.8 loc = np.where(res >= threshold) cv2.imwrite('result.png', img_rgb) return loc
Example #26
Source File: fgoFunc.py From FGO-py with MIT License | 5 votes |
def select(self,img,rect=(0,0,1920,1080)):return(lambda x:x.index(min(x)))([cv2.minMaxLoc(cv2.matchTemplate(self.im[rect[1]:rect[3],rect[0]:rect[2]],i,cv2.TM_SQDIFF_NORMED))[0]for i in img])
Example #27
Source File: image_template.py From airtest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def template_match(source_image, template_image, region_center, option=0): """ template match @param source_image: np.array(input source image) @param template_image: np.array(input template image) @param region_center: list(if not None, it means source_image is part of origin target image, otherwise, it is origin target image) @param option: int(if it is not zero, source_image and template_image will be global thresholding) @return max_val: float(the max match value) @return [x,y]: list(the best match position) """ template_width = template_image.shape[1] template_height = template_image.shape[0] [source_width,source_height] = [source_image.shape[1],source_image.shape[0]] width = source_width - template_width + 1 height = source_height - template_height + 1 if width < 1 or height < 1: return None if option == 0: [s_thresh, t_thresh] = [source_image, template_image] else: s_ret,s_thresh = cv2.threshold(source_image,200,255,cv2.THRESH_TOZERO) t_ret,t_thresh = cv2.threshold(template_image,200,255,cv2.THRESH_TOZERO) '''template match''' result = cv2.matchTemplate(s_thresh, t_thresh, cv2.cv.CV_TM_CCORR_NORMED) (min_val, max_val, minloc, maxloc) = cv2.minMaxLoc(result) if len(region_center): x = int(maxloc[0]+region_center[0]-source_width/2) y = int(maxloc[1]+region_center[1]-source_height/2) else: [x,y] = maxloc return max_val, [x,y]
Example #28
Source File: ImageCoordinate.py From roc with MIT License | 5 votes |
def is_on_screen(this, accuracy=0.14): this = this + '.png' Screenshot.shot() small_image = cv2.imread(this) h, w, c = small_image.shape large_image = cv2.imread('playing.png') result = cv2.matchTemplate( small_image, large_image, cv2.TM_SQDIFF_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) #print('ImageCoordinate::is_on_screen => ' + this + ' ' + str(min_val)) mn, _, mn_loc, mx_loc = cv2.minMaxLoc(result) mp_x, mp_y = mn_loc m_x, m_y = mx_loc # print(mn_loc) # top_left = mn_loc # mx_right = mx_loc bt_rt = (mn_loc[0], mn_loc[1]) bt_rtw = (mn_loc[0]+w, mn_loc[1]+h) # cv2.rectangle(large_image,top_left,bt_rt,255,2) # bt_rt =(mx_right[0]+h,mx_right[1]+w) # cv2.rectangle(large_image,mx_right,bt_rt,255,2) # cv2.imwrite('result_'+this.replace('images/',''), large_image) # print('saved') #pyautogui.moveTo(mp_x, mp_y) print(min_val) if min_val > accuracy: return False else: mn, _, mn_loc, _ = cv2.minMaxLoc(result) mp_x, mp_y = mn_loc ordinal = random.randrange(1, 15) a = random.randrange(-ordinal, ordinal) b = random.randrange(-ordinal, ordinal) location = [mp_x + w / 2+a, mp_y + h / 2+b, bt_rt, bt_rtw, min_val] return location
Example #29
Source File: util.py From FGO-Automata with MIT License | 5 votes |
def get_crd(sh: str, tmp: str, threshold: float = 0.85) -> [(int, int)]: img = cv2.imread(sh, 0) template = cv2.imread(tmp, 0) res = cv2.matchTemplate(img, template, cv2.TM_CCOEFF_NORMED) pos = [] loc = np.where(res >= threshold) for pt in zip(*loc[::-1]): pos.append(pt) return pos
Example #30
Source File: __init__.py From pyscreeze with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _load_cv2(img, grayscale=None): """ TODO """ # load images if given filename, or convert as needed to opencv # Alpha layer just causes failures at this point, so flatten to RGB. # RGBA: load with -1 * cv2.CV_LOAD_IMAGE_COLOR to preserve alpha # to matchTemplate, need template and image to be the same wrt having alpha if grayscale is None: grayscale = GRAYSCALE_DEFAULT if isinstance(img, (str, unicode)): # The function imread loads an image from the specified file and # returns it. If the image cannot be read (because of missing # file, improper permissions, unsupported or invalid format), # the function returns an empty matrix # http://docs.opencv.org/3.0-beta/modules/imgcodecs/doc/reading_and_writing_images.html if grayscale: img_cv = cv2.imread(img, LOAD_GRAYSCALE) else: img_cv = cv2.imread(img, LOAD_COLOR) if img_cv is None: raise IOError("Failed to read %s because file is missing, " "has improper permissions, or is an " "unsupported or invalid format" % img) elif isinstance(img, numpy.ndarray): # don't try to convert an already-gray image to gray if grayscale and len(img.shape) == 3: # and img.shape[2] == 3: img_cv = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: img_cv = img elif hasattr(img, 'convert'): # assume its a PIL.Image, convert to cv format img_array = numpy.array(img.convert('RGB')) img_cv = img_array[:, :, ::-1].copy() # -1 does RGB -> BGR if grayscale: img_cv = cv2.cvtColor(img_cv, cv2.COLOR_BGR2GRAY) else: raise TypeError('expected an image filename, OpenCV numpy array, or PIL image') return img_cv