Python numpy.random.multinomial() Examples
The following are 30
code examples of numpy.random.multinomial().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.random
, or try the search function
.
Example #1
Source File: isp_data_pollution.py From isp-data-pollution with MIT License | 6 votes |
def draw_links(self,n=1,log_sampling=False): """ Draw multiple random links. """ urls = [] domain_array = np.array([dmn for dmn in self.domain_links]) domain_count = np.array([len(self.domain_links[domain_array[k]]) for k in range(domain_array.shape[0])]) p = np.array([np.float(c) for c in domain_count]) count_total = p.sum() if log_sampling: # log-sampling [log(x+1)] to bias lower count domains p = np.fromiter((np.log1p(x) for x in p), dtype=p.dtype) if count_total > 0: p = p/p.sum() cnts = npr.multinomial(n, pvals=p) if n > 1: for k in range(cnts.shape[0]): domain = domain_array[k] cnt = min(cnts[k],domain_count[k]) for url in random.sample(self.domain_links[domain],cnt): urls.append(url) else: k = int(np.nonzero(cnts)[0]) domain = domain_array[k] url = random.sample(self.domain_links[domain],1)[0] urls.append(url) return urls
Example #2
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])
Example #3
Source File: test_random.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1/6.]*6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263
Example #4
Source File: test_random.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_multinomial(self): np.random.seed(self.seed) actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) assert_array_equal(actual, desired)
Example #5
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
Example #6
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, np.random.multinomial, 1, p, np.float(1))
Example #7
Source File: test_random.py From keras-lambda with MIT License | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])
Example #8
Source File: test_random.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, np.random.multinomial, 1, p, float(1))
Example #9
Source File: test_random.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
Example #10
Source File: test_random.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])
Example #11
Source File: test_random.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1/6.]*6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263
Example #12
Source File: test_random.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_multinomial(self): np.random.seed(self.seed) actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) assert_array_equal(actual, desired)
Example #13
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1/6.]*6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263
Example #14
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_multinomial(self): np.random.seed(self.seed) actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) assert_array_equal(actual, desired)
Example #15
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, np.random.multinomial, 1, p, np.float(1))
Example #16
Source File: test_random.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
Example #17
Source File: read_simulator.py From altanalyze with Apache License 2.0 | 5 votes |
def sample_random_read(gene, true_psi, read_len, overhang_len): """ Sample a random read (not taking into account overhang) from the given set of exons and the true Psi value. Note that if we're given a gene that has only two isoforms, the 'align' function of gene will return a read summary in the form of (NI, NE, NB) rather than an alignment to the two isoforms (which is a pair (0/1, 0/1)). """ iso_lens = [iso.len for iso in gene.isoforms] num_positions = array([(l - read_len + 1) for l in iso_lens]) # probability of sampling a particular position from an isoform -- assume uniform for now iso_probs = [1/float(n) for n in num_positions] psi_frag_denom = sum(num_positions * array(true_psi)) psi_frags = [(num_pos * curr_psi)/psi_frag_denom for num_pos, curr_psi \ in zip(num_positions, true_psi)] # Choose isoform to sample read from chosen_iso = list(multinomial(1, psi_frags)).index(1) isoform_position_prob = ones(num_positions[chosen_iso]) * iso_probs[chosen_iso] sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) sampled_read_end = sampled_read_start + read_len - 1 # seq = gene.isoforms[chosen_iso].seq[sampled_read_start:sampled_read_end] # alignment, category = gene.align(seq, overhang=overhang_len) ## ## Trying out new alignment method ## # convert coordinates to genomic genomic_read_start, genomic_read_end = \ gene.isoforms[chosen_iso].isoform_coords_to_genomic(sampled_read_start, sampled_read_end) alignment, category = gene.align_read(genomic_read_start, genomic_read_end, overhang=overhang_len) return (tuple(alignment), [sampled_read_start, sampled_read_end], category, chosen_iso)
Example #18
Source File: isp_data_pollution.py From isp-data-pollution with MIT License | 5 votes |
def draw_domain(self,log_sampling=False): """ Draw a single, random domain. """ domain = None domain_array = np.array([dmn for dmn in self.domain_links]) domain_count = np.array([len(self.domain_links[domain_array[k]]) for k in range(domain_array.shape[0])]) p = np.array([np.float(c) for c in domain_count]) count_total = p.sum() if log_sampling: # log-sampling [log(x+1)] to bias lower count domains p = np.fromiter((np.log1p(x) for x in p), dtype=p.dtype) if count_total > 0: p = p/p.sum() cnts = npr.multinomial(1, pvals=p) k = int(np.nonzero(cnts)[0]) domain = domain_array[k] return domain
Example #19
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1/6.]*6, size=10000) self.check_function(gen_random, sz=(10000,6))
Example #20
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_multinomial(self): np.random.seed(self.seed) actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) np.testing.assert_array_equal(actual, desired)
Example #21
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, np.random.multinomial, 1, p, np.float(1))
Example #22
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
Example #23
Source File: test_random.py From ImageFusion with MIT License | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])
Example #24
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_multinomial(self): def gen_random(state, out): out[...] = state.multinomial(10, [1/6.]*6, size=10000) self.check_function(gen_random, sz=(10000, 6)) # See Issue #4263
Example #25
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_multinomial(self): np.random.seed(self.seed) actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2)) desired = np.array([[[4, 3, 5, 4, 2, 2], [5, 2, 8, 2, 2, 1]], [[3, 4, 3, 6, 0, 4], [2, 1, 4, 3, 6, 4]], [[4, 4, 2, 5, 2, 3], [4, 3, 4, 2, 3, 4]]]) assert_array_equal(actual, desired)
Example #26
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_size(self): # gh-3173 p = [0.5, 0.5] assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2)) assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2)) assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape, (2, 2, 2)) assert_raises(TypeError, np.random.multinomial, 1, p, np.float(1))
Example #27
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_zero_probability(self): random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])
Example #28
Source File: test_random.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])
Example #29
Source File: read_simulator.py From rmats2sashimiplot with GNU General Public License v2.0 | 5 votes |
def read_counts_to_read_list(ni, ne, nb): """ Convert a set of read counts for a two-isoform gene (NI, NE, NB) to a list of reads. """ reads = [] reads.extend(ni * [[1, 0]]) reads.extend(ne * [[0, 1]]) reads.extend(nb * [[1, 1]]) return array(reads) # def sample_random_read(gene, true_psi, read_len, overhang_len): # """ # Sample a random read (not taking into account overhang) from the # given set of exons and the given true Psi value. # """ # iso1_len = gene.isoforms[0]['len'] # iso2_len = gene.isoforms[1]['len'] # num_inc = 0 # num_exc = 0 # num_both = 0 # num_positions_iso1 = iso1_len - read_len + 1 # num_positions_iso2 = iso2_len - read_len + 1 # p1 = 1/float(num_positions_iso1) # p2 = 1/float(num_positions_iso2) # psi_frag = (num_positions_iso1*true_psi)/((num_positions_iso1*true_psi + num_positions_iso2*(1-true_psi))) # # Choose isoform to sample read from # if rand() < psi_frag: # isoform_position_prob = ones(num_positions_iso1)*p1 # sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) # sampled_read_end = sampled_read_start + read_len # seq = gene.isoforms[0]['seq'][sampled_read_start:sampled_read_end] # [n1, n2, nb], category = gene.align_two_isoforms(seq, overhang=overhang_len) # return [[n1, n2, nb], [sampled_read_start, sampled_read_end], category] # else: # isoform_position_prob = ones(num_positions_iso2)*p2 # sampled_read_start = list(multinomial(1, isoform_position_prob)).index(1) # sampled_read_end = sampled_read_start + read_len # seq = gene.isoforms[1]['seq'][sampled_read_start:sampled_read_end] # [n1, n2, nb], category = gene.align_two_isoforms(seq, overhang=overhang_len) # return [[n1, n2, nb], [sampled_read_start, sampled_read_end], category]
Example #30
Source File: test_random.py From recruit with Apache License 2.0 | 5 votes |
def test_basic(self): random.multinomial(100, [0.2, 0.8])