Python numpy.floor() Examples
The following are 30
code examples of numpy.floor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: deform.py From dataflow with Apache License 2.0 | 6 votes |
def np_sample(img, coords): # a numpy implementation of ImageSample layer coords = np.maximum(coords, 0) coords = np.minimum(coords, np.array([img.shape[0] - 1, img.shape[1] - 1])) lcoor = np.floor(coords).astype('int32') ucoor = lcoor + 1 ucoor = np.minimum(ucoor, np.array([img.shape[0] - 1, img.shape[1] - 1])) diff = coords - lcoor neg_diff = 1.0 - diff lcoory, lcoorx = np.split(lcoor, 2, axis=2) ucoory, ucoorx = np.split(ucoor, 2, axis=2) diff = np.repeat(diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3)) neg_diff = np.repeat(neg_diff, 3, 2).reshape((diff.shape[0], diff.shape[1], 2, 3)) diffy, diffx = np.split(diff, 2, axis=2) ndiffy, ndiffx = np.split(neg_diff, 2, axis=2) ret = img[lcoory, lcoorx, :] * ndiffx * ndiffy + \ img[ucoory, ucoorx, :] * diffx * diffy + \ img[lcoory, ucoorx, :] * ndiffy * diffx + \ img[ucoory, lcoorx, :] * diffy * ndiffx return ret[:, :, 0, :]
Example #2
Source File: numerical.py From Kaggler with MIT License | 6 votes |
def _transform_col(self, x, i): """Encode one numerical feature column to quantiles. Args: x (pandas.Series): numerical feature column to encode i (int): column index of the numerical feature Returns: Encoded feature (pandas.Series). """ # Map values to the emperical CDF between .1% and 99.9% rv = np.ones_like(x) * -1 filt = ~np.isnan(x) rv[filt] = np.floor((self.ecdfs[i](x[filt]) * 0.998 + .001) * self.n_label) return rv
Example #3
Source File: keplerSTM_indprop.py From EXOSIMS with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, x0, mu, epsmult = 4.0, noc = False): #determine number of planets and validate input nplanets = x0.size/6. if (nplanets - np.floor(nplanets) > 0): raise Exception('The length of x0 must be a multiple of 6.') if (mu.size != nplanets): raise Exception('The length of mu must be the length of x0 divided by 6') self.nplanets = int(nplanets) self.mu = np.squeeze(mu) if (self.mu.size == 1): self.mu = np.array(mu) self.epsmult = epsmult if not(noc) and ('EXOSIMS.util.KeplerSTM_C.CyKeplerSTM' in sys.modules): self.havec = True self.x0 = np.squeeze(x0) else: self.havec = False self.updateState(np.squeeze(x0))
Example #4
Source File: interpolation.py From scarlet with MIT License | 6 votes |
def lanczos(dx, a=3): """Lanczos kernel Parameters ---------- dx: float amount to shift image a: int Lanczos window size parameter Returns ------- result: array-like 1D Lanczos kernel """ if np.abs(dx) > 1: raise ValueError("The fractional shift dx must be between -1 and 1") window = np.arange(-a + 1, a + 1) + np.floor(dx) y = np.sinc(dx - window) * np.sinc((dx - window) / a) return y, window.astype(int)
Example #5
Source File: pano_lsd_align.py From HorizonNet with MIT License | 6 votes |
def warpImageFast(im, XXdense, YYdense): minX = max(1., np.floor(XXdense.min()) - 1) minY = max(1., np.floor(YYdense.min()) - 1) maxX = min(im.shape[1], np.ceil(XXdense.max()) + 1) maxY = min(im.shape[0], np.ceil(YYdense.max()) + 1) im = im[int(round(minY-1)):int(round(maxY)), int(round(minX-1)):int(round(maxX))] assert XXdense.shape == YYdense.shape out_shape = XXdense.shape coordinates = [ (YYdense - minY).reshape(-1), (XXdense - minX).reshape(-1), ] im_warp = np.stack([ map_coordinates(im[..., c], coordinates, order=1).reshape(out_shape) for c in range(im.shape[-1])], axis=-1) return im_warp
Example #6
Source File: pano_lsd_align.py From HorizonNet with MIT License | 6 votes |
def paintParameterLine(parameterLine, width, height): lines = parameterLine.copy() panoEdgeC = np.zeros((height, width)) num_sample = max(height, width) for i in range(len(lines)): n = lines[i, :3] sid = lines[i, 4] * 2 * np.pi eid = lines[i, 5] * 2 * np.pi if eid < sid: x = np.linspace(sid, eid + 2 * np.pi, num_sample) x = x % (2 * np.pi) else: x = np.linspace(sid, eid, num_sample) u = -np.pi + x.reshape(-1, 1) v = computeUVN(n, u, lines[i, 3]) xyz = uv2xyzN(np.hstack([u, v]), lines[i, 3]) uv = xyz2uvN(xyz, 1) m = np.minimum(np.floor((uv[:,0] + np.pi) / (2 * np.pi) * width) + 1, width).astype(np.int32) n = np.minimum(np.floor(((np.pi / 2) - uv[:, 1]) / np.pi * height) + 1, height).astype(np.int32) panoEdgeC[n-1, m-1] = i return panoEdgeC
Example #7
Source File: dataset.py From ICDAR-2019-SROIE with MIT License | 6 votes |
def __call__(self, batch): images, labels = zip(*batch) imgH = self.imgH imgW = self.imgW if self.keep_ratio: ratios = [] for image in images: w, h = image.size ratios.append(w / float(h)) ratios.sort() max_ratio = ratios[-1] imgW = int(np.floor(max_ratio * imgH)) imgW = max(imgH * self.min_ratio, imgW) # assure imgH >= imgW transform = resizeNormalize((imgW, imgH)) images = [transform(image) for image in images] images = torch.cat([t.unsqueeze(0) for t in images], 0) return images, labels
Example #8
Source File: geometric.py From differential-privacy-library with MIT License | 6 votes |
def randomise(self, value): """Randomise `value` with the mechanism. Parameters ---------- value : int The value to be randomised. Returns ------- int The randomised value. """ self.check_inputs(value) # Need to account for overlap of 0-value between distributions of different sign unif_rv = random() - 0.5 unif_rv *= 1 + np.exp(self._scale) sgn = -1 if unif_rv < 0 else 1 # Use formula for geometric distribution, with ratio of exp(-epsilon/sensitivity) return int(np.round(value + sgn * np.floor(np.log(sgn * unif_rv) / self._scale)))
Example #9
Source File: ecg_simulate.py From NeuroKit with MIT License | 6 votes |
def _ecg_simulate_derivsecgsyn(t, x, rr, ti, sfint, ai, bi): ta = math.atan2(x[1], x[0]) r0 = 1 a0 = 1.0 - np.sqrt(x[0] ** 2 + x[1] ** 2) / r0 ip = np.floor(t * sfint).astype(int) w0 = 2 * np.pi / rr[min(ip, len(rr) - 1)] # w0 = 2*np.pi/rr[ip[ip <= np.max(rr)]] fresp = 0.25 zbase = 0.005 * np.sin(2 * np.pi * fresp * t) dx1dt = a0 * x[0] - w0 * x[1] dx2dt = a0 * x[1] + w0 * x[0] # matlab rem and numpy rem are different # dti = np.remainder(ta - ti, 2*np.pi) dti = (ta - ti) - np.round((ta - ti) / 2 / np.pi) * 2 * np.pi dx3dt = -np.sum(ai * dti * np.exp(-0.5 * (dti / bi) ** 2)) - 1 * (x[2] - zbase) dxdt = np.array([dx1dt, dx2dt, dx3dt]) return dxdt
Example #10
Source File: mel_features.py From sklearn-audio-transfer-learning with ISC License | 6 votes |
def frame(data, window_length, hop_length): """Convert array into a sequence of successive possibly overlapping frames. An n-dimensional array of shape (num_samples, ...) is converted into an (n+1)-D array of shape (num_frames, window_length, ...), where each frame starts hop_length points after the preceding one. This is accomplished using stride_tricks, so the original data is not copied. However, there is no zero-padding, so any incomplete frames at the end are not included. Args: data: np.array of dimension N >= 1. window_length: Number of samples in each frame. hop_length: Advance (in samples) between each window. Returns: (N+1)-D np.array with as many rows as there are complete frames that can be extracted. """ num_samples = data.shape[0] num_frames = 1 + int(np.floor((num_samples - window_length) / hop_length)) shape = (num_frames, window_length) + data.shape[1:] strides = (data.strides[0] * hop_length,) + data.strides return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides)
Example #11
Source File: gaussian.py From differential-privacy-library with MIT License | 6 votes |
def randomise(self, value): self.check_inputs(value) if self._scale == 0: return value tau = 1 / (1 + np.floor(self._scale)) sigma2 = self._scale ** 2 while True: geom_x = 0 while self._bernoulli_exp(tau): geom_x += 1 bern_b = np.random.binomial(1, 0.5) if bern_b and not geom_x: continue lap_y = int((1 - 2 * bern_b) * geom_x) bern_c = self._bernoulli_exp((abs(lap_y) - tau * sigma2) ** 2 / 2 / sigma2) if bern_c: return value + lap_y
Example #12
Source File: tedana.py From me-ica with GNU Lesser General Public License v2.1 | 6 votes |
def scoreatpercentile(a, per, limit=(), interpolation_method='lower'): """ This function is grabbed from scipy """ values = np.sort(a, axis=0) if limit: values = values[(limit[0] <= values) & (values <= limit[1])] idx = per /100. * (values.shape[0] - 1) if (idx % 1 == 0): score = values[int(idx)] else: if interpolation_method == 'fraction': score = _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1) elif interpolation_method == 'lower': score = values[int(np.floor(idx))] elif interpolation_method == 'higher': score = values[int(np.ceil(idx))] else: raise ValueError("interpolation_method can only be 'fraction', " \ "'lower' or 'higher'") return score
Example #13
Source File: augment_data.py From Spoken-language-identification with MIT License | 5 votes |
def logscale_spec(spec, sr=44100, factor=20., alpha=1.0, f0=0.9, fmax=1): spec = spec[:, 0:256] timebins, freqbins = np.shape(spec) scale = np.linspace(0, 1, freqbins) #** factor # http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=650310&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel4%2F89%2F14168%2F00650310 scale = np.array(map(lambda x: x * alpha if x <= f0 else (fmax-alpha*f0)/(fmax-f0)*(x-f0)+alpha*f0, scale)) scale *= (freqbins-1)/max(scale) newspec = np.complex128(np.zeros([timebins, freqbins])) allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1]) freqs = [0.0 for i in range(freqbins)] totw = [0.0 for i in range(freqbins)] for i in range(0, freqbins): if (i < 1 or i + 1 >= freqbins): newspec[:, i] += spec[:, i] freqs[i] += allfreqs[i] totw[i] += 1.0 continue else: # scale[15] = 17.2 w_up = scale[i] - np.floor(scale[i]) w_down = 1 - w_up j = int(np.floor(scale[i])) newspec[:, j] += w_down * spec[:, i] freqs[j] += w_down * allfreqs[i] totw[j] += w_down newspec[:, j + 1] += w_up * spec[:, i] freqs[j + 1] += w_up * allfreqs[i] totw[j + 1] += w_up for i in range(len(freqs)): if (totw[i] > 1e-6): freqs[i] /= totw[i] return newspec, freqs
Example #14
Source File: test_loss_functions.py From risk-slim with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate_integer_model(n_cols = 20, rho_ub = 100, rho_lb = -100, sparse_pct = 0.5): rho = np.random.randint(low=rho_lb, high=rho_ub, size=n_cols) rho = np.require(rho, dtype=Z.dtype, requirements=['F']) nnz_count = int(sparse_pct * np.floor(n_cols / 2)) set_to_zero = np.random.choice(range(0, n_cols), size=nnz_count, replace=False) rho[set_to_zero] = 0.0 return rho
Example #15
Source File: tests_complexity.py From NeuroKit with MIT License | 5 votes |
def pyeeg_bin_power(X, Band, Fs): C = np.fft.fft(X) C = abs(C) Power = np.zeros(len(Band) - 1) for Freq_Index in range(0, len(Band) - 1): Freq = float(Band[Freq_Index]) Next_Freq = float(Band[Freq_Index + 1]) Power[Freq_Index] = sum(C[int(np.floor(Freq / Fs * len(X))) : int(np.floor(Next_Freq / Fs * len(X)))]) Power_Ratio = Power / sum(Power) return Power, Power_Ratio
Example #16
Source File: integer.py From ncvx with GNU General Public License v3.0 | 5 votes |
def __init__(self, rows=1, cols=1, M=None, *args, **kwargs): if M is None or np.any(M <= 0): raise Exception("Integer requires positive values for M.") self.M = np.floor(M) if np.isscalar(self.M) and (rows, cols) != (1,1): self.M = self.M*np.ones((rows,cols)) super(Integer, self).__init__(rows, cols, *args, **kwargs)
Example #17
Source File: casting.py From me-ica with GNU Lesser General Public License v2.1 | 5 votes |
def floor_log2(x): """ floor of log2 of abs(`x`) Embarrassingly, from http://en.wikipedia.org/wiki/Binary_logarithm Parameters ---------- x : int Returns ------- L : None or int floor of base 2 log of `x`. None if `x` == 0. Examples -------- >>> floor_log2(2**9+1) 9 >>> floor_log2(-2**9+1) 8 >>> floor_log2(0.5) -1 >>> floor_log2(0) is None True """ ip = 0 rem = abs(x) if rem > 1: while rem>=2: ip += 1 rem //= 2 return ip elif rem == 0: return None while rem < 1: ip -= 1 rem *= 2 return ip
Example #18
Source File: fractal_correlation.py From NeuroKit with MIT License | 5 votes |
def _fractal_correlation_get_r(r, signal, dist): if isinstance(r, str): if r == "nolds": sd = np.std(signal, ddof=1) min_r, max_r, factor = 0.1 * sd, 0.5 * sd, 1.03 r_n = int(np.floor(np.log(1.0 * max_r / min_r) / np.log(factor))) r_vals = np.array([min_r * (factor ** i) for i in range(r_n + 1)]) elif r == "Corr_Dim": r_min, r_max = np.min(dist[np.where(dist > 0)]), np.exp(np.floor(np.log(np.max(dist)))) n_r = np.int(np.floor(np.log(r_max / r_min))) + 1 ones = -1 * np.ones([n_r]) r_vals = r_max * np.exp(ones * np.arange(n_r) - ones) elif r == "boon2008": r_min, r_max = np.min(dist[np.where(dist > 0)]), np.max(dist) r_vals = r_min + np.arange(1, 65) * ((r_max - r_min) / 64) if isinstance(r, int): dist_range = np.max(dist) - np.min(dist) r_min, r_max = (np.min(dist) + 0.025 * dist_range), (np.min(dist) + 0.5 * dist_range) r_vals = np.exp2(np.linspace(np.log2(r_min), np.log2(r_max), r, endpoint=True)) return r_vals
Example #19
Source File: test_round_trip.py From me-ica with GNU Lesser General Public License v2.1 | 5 votes |
def big_bad_ulp(arr): """ Return array of ulp values for values in `arr` I haven't thought about whether the vectorized log2 here could lead to incorrect rounding; this only needs to be ballpark This function might be used in nipy/io/tests/test_image_io.py Parameters ---------- arr : array floating point array Returns ------- ulps : array ulp values for each element of arr """ # Assumes array is floating point arr = np.asarray(arr) info = type_info(arr.dtype) working_arr = np.abs(arr.astype(BFT)) # Log2 for numpy < 1.3 fl2 = np.zeros_like(working_arr) + info['minexp'] # Avoid divide by zero error for log of 0 nzs = working_arr > 0 fl2[nzs] = np.floor(np.log(working_arr[nzs]) / LOGe2) fl2 = np.clip(fl2, info['minexp'], np.inf) return 2**(fl2 - info['nmant'])
Example #20
Source File: panostretch.py From HorizonNet with MIT License | 5 votes |
def pano_connect_points(p1, p2, z=-50, w=1024, h=512): if p1[0] == p2[0]: return np.array([p1, p2], np.float32) u1 = coorx2u(p1[0], w) v1 = coory2v(p1[1], h) u2 = coorx2u(p2[0], w) v2 = coory2v(p2[1], h) x1, y1 = uv2xy(u1, v1, z) x2, y2 = uv2xy(u2, v2, z) if abs(p1[0] - p2[0]) < w / 2: pstart = np.ceil(min(p1[0], p2[0])) pend = np.floor(max(p1[0], p2[0])) else: pstart = np.ceil(max(p1[0], p2[0])) pend = np.floor(min(p1[0], p2[0]) + w) coorxs = (np.arange(pstart, pend + 1) % w).astype(np.float64) vx = x2 - x1 vy = y2 - y1 us = coorx2u(coorxs, w) ps = (np.tan(us) * x1 - y1) / (vy - np.tan(us) * vx) cs = np.sqrt((x1 + ps * vx) ** 2 + (y1 + ps * vy) ** 2) vs = np.arctan2(z, cs) coorys = v2coory(vs, h) return np.stack([coorxs, coorys], axis=-1)
Example #21
Source File: wfg.py From pymoo with Apache License 2.0 | 5 votes |
def _transformation_bias_flat(y, a, b, c): ret = a + np.minimum(0, np.floor(y - b)) * (a * (b - y) / b) \ - np.minimum(0, np.floor(c - y)) * ((1.0 - a) * (y - c) / (1.0 - c)) return correct_to_01(ret)
Example #22
Source File: utils.py From AdaptiveWingLoss with Apache License 2.0 | 5 votes |
def draw_gaussian(image, point, sigma): # Check if the gaussian is inside ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)] br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)] if (ul[0] > image.shape[1] or ul[1] > image.shape[0] or br[0] < 1 or br[1] < 1): return image size = 6 * sigma + 1 g = _gaussian(size) g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] assert (g_x[0] > 0 and g_y[1] > 0) correct = False while not correct: try: image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1] ] = image[img_y[0] - 1:img_y[1], img_x[0] - 1:img_x[1]] + g[g_y[0] - 1:g_y[1], g_x[0] - 1:g_x[1]] correct = True except: print('img_x: {}, img_y: {}, g_x:{}, g_y:{}, point:{}, g_shape:{}, ul:{}, br:{}'.format(img_x, img_y, g_x, g_y, point, g.shape, ul, br)) ul = [np.floor(np.floor(point[0]) - 3 * sigma), np.floor(np.floor(point[1]) - 3 * sigma)] br = [np.floor(np.floor(point[0]) + 3 * sigma), np.floor(np.floor(point[1]) + 3 * sigma)] g_x = [int(max(1, -ul[0])), int(min(br[0], image.shape[1])) - int(max(1, ul[0])) + int(max(1, -ul[0]))] g_y = [int(max(1, -ul[1])), int(min(br[1], image.shape[0])) - int(max(1, ul[1])) + int(max(1, -ul[1]))] img_x = [int(max(1, ul[0])), int(min(br[0], image.shape[1]))] img_y = [int(max(1, ul[1])), int(min(br[1], image.shape[0]))] pass image[image > 1] = 1 return image
Example #23
Source File: carbonara.py From gnocchi with Apache License 2.0 | 5 votes |
def quantile(self, q): ordered = numpy.lexsort((self._ts['values'], self.indexes)) min_pos = numpy.cumsum(self.counts) - self.counts real_pos = min_pos + (self.counts - 1) * (q / 100) floor_pos = numpy.floor(real_pos).astype(numpy.int, copy=False) ceil_pos = numpy.ceil(real_pos).astype(numpy.int, copy=False) values = ( self._ts['values'][ordered][floor_pos] * (ceil_pos - real_pos) + self._ts['values'][ordered][ceil_pos] * (real_pos - floor_pos)) # NOTE(gordc): above code doesn't compute proper value if pct lands on # exact index, it sets it to 0. we need to set it properly here exact_pos = numpy.equal(floor_pos, ceil_pos) values[exact_pos] = self._ts['values'][ordered][floor_pos][exact_pos] return make_timeseries(self.tstamps, values)
Example #24
Source File: carbonara.py From gnocchi with Apache License 2.0 | 5 votes |
def round_timestamp(ts, freq): return UNIX_UNIVERSAL_START64 + numpy.floor( (ts - UNIX_UNIVERSAL_START64) / freq) * freq
Example #25
Source File: preprocess.py From Voice_Converter_CycleGAN with MIT License | 5 votes |
def wav_padding(wav, sr, frame_period, multiple = 4): assert wav.ndim == 1 num_frames = len(wav) num_frames_padded = int((np.ceil((np.floor(num_frames / (sr * frame_period / 1000)) + 1) / multiple + 1) * multiple - 1) * (sr * frame_period / 1000)) num_frames_diff = num_frames_padded - num_frames num_pad_left = num_frames_diff // 2 num_pad_right = num_frames_diff - num_pad_left wav_padded = np.pad(wav, (num_pad_left, num_pad_right), 'constant', constant_values = 0) return wav_padded
Example #26
Source File: roi_pool_py.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 5 votes |
def forward(self, features, rois): batch_size, num_channels, data_height, data_width = features.size() num_rois = rois.size()[0] outputs = Variable(torch.zeros(num_rois, num_channels, self.pooled_height, self.pooled_width)).cuda() for roi_ind, roi in enumerate(rois): batch_ind = int(roi[0].data[0]) roi_start_w, roi_start_h, roi_end_w, roi_end_h = np.round( roi[1:].data.cpu().numpy() * self.spatial_scale).astype(int) roi_width = max(roi_end_w - roi_start_w + 1, 1) roi_height = max(roi_end_h - roi_start_h + 1, 1) bin_size_w = float(roi_width) / float(self.pooled_width) bin_size_h = float(roi_height) / float(self.pooled_height) for ph in range(self.pooled_height): hstart = int(np.floor(ph * bin_size_h)) hend = int(np.ceil((ph + 1) * bin_size_h)) hstart = min(data_height, max(0, hstart + roi_start_h)) hend = min(data_height, max(0, hend + roi_start_h)) for pw in range(self.pooled_width): wstart = int(np.floor(pw * bin_size_w)) wend = int(np.ceil((pw + 1) * bin_size_w)) wstart = min(data_width, max(0, wstart + roi_start_w)) wend = min(data_width, max(0, wend + roi_start_w)) is_empty = (hend <= hstart) or(wend <= wstart) if is_empty: outputs[roi_ind, :, ph, pw] = 0 else: data = features[batch_ind] outputs[roi_ind, :, ph, pw] = torch.max( torch.max(data[:, hstart:hend, wstart:wend], 1)[0], 2)[0].view(-1) return outputs
Example #27
Source File: node.py From tensortrade with Apache License 2.0 | 5 votes |
def floor(self) -> 'Node': name = "Floor({})".format(self.name) return self.apply(np.floor).rename(name)
Example #28
Source File: go_funcs_G.py From pymoo with Apache License 2.0 | 5 votes |
def fun(self, x, *args): self.nfev += 1 return (1. / 6.931 - floor(x[0]) * floor(x[1]) / floor(x[2]) / floor(x[3])) ** 2
Example #29
Source File: wfg.py From pymoo with Apache License 2.0 | 5 votes |
def _transformation_param_deceptive(y, A=0.35, B=0.001, C=0.05): tmp1 = np.floor(y - A + B) * (1.0 - C + (A - B) / B) / (A - B) tmp2 = np.floor(A + B - y) * (1.0 - C + (1.0 - A - B) / B) / (1.0 - A - B) ret = 1.0 + (np.fabs(y - A) - B) * (tmp1 + tmp2 + 1.0 / B) return correct_to_01(ret) # --------------------------------------------------------------------------------------------------------- # REDUCTION # ---------------------------------------------------------------------------------------------------------
Example #30
Source File: node.py From tensortrade with Apache License 2.0 | 5 votes |
def __floor__(self): return self.floor()