Python sklearn.preprocessing.StandardScaler() Examples
The following are 30
code examples of sklearn.preprocessing.StandardScaler().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.preprocessing
, or try the search function
.
Example #1
Source File: main.py From transferlearning with MIT License | 14 votes |
def classify_1nn(data_train, data_test): ''' Classification using 1NN Inputs: data_train, data_test: train and test csv file path Outputs: yprediction and accuracy ''' from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler data = {'src': np.loadtxt(data_train, delimiter=','), 'tar': np.loadtxt(data_test, delimiter=','), } Xs, Ys, Xt, Yt = data['src'][:, :-1], data['src'][:, - 1], data['tar'][:, :-1], data['tar'][:, -1] Xs = StandardScaler(with_mean=0, with_std=1).fit_transform(Xs) Xt = StandardScaler(with_mean=0, with_std=1).fit_transform(Xt) clf = KNeighborsClassifier(n_neighbors=1) clf.fit(Xs, Ys) ypred = clf.predict(Xt) acc = accuracy_score(y_true=Yt, y_pred=ypred) print('Acc: {:.4f}'.format(acc)) return ypred, acc
Example #2
Source File: test_invalid.py From mabwiser with Apache License 2.0 | 7 votes |
def test_invalid_log_format(self): rng = np.random.RandomState(seed=7) with self.assertRaises(TypeError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7, log_format=7) with self.assertRaises(TypeError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7, log_format=None)
Example #3
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 7 votes |
def test_contextual_quick(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(20)], rewards=[rng.randint(0, 2) for _ in range(20)], contexts=[[rng.rand() for _ in range(5)] for _ in range(20)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7, is_quick=True) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions))
Example #4
Source File: data_utils.py From CalibrationNN with GNU General Public License v3.0 | 6 votes |
def pca(self, **kwargs): if 'n_components' in kwargs: nComp = kwargs['n_components'] else: nComp = 0.995 if 'dates' in kwargs: mat = self.to_matrix(kwargs['dates']) else: mat = self.to_matrix() scaler = StandardScaler() pca = PCA(n_components=nComp) self._pipeline = Pipeline([('scaler', scaler), ('pca', pca)]) self._pipeline.fit(mat) if 'file' in kwargs: tofile(kwargs['file'], self._pipeline) return self._pipeline
Example #5
Source File: test_StandardScaler.py From differential-privacy-library with MIT License | 6 votes |
def test_accountant(self): from diffprivlib.accountant import BudgetAccountant acc = BudgetAccountant() X = np.random.rand(10, 5) ss = StandardScaler(epsilon=1, bounds=(0, 1), accountant=acc) ss.fit(X) self.assertEqual((1, 0), acc.total()) with BudgetAccountant(1.5, 0) as acc2: ss = StandardScaler(epsilon=1, bounds=(0, 1)) ss.fit(X) self.assertEqual((1, 0), acc2.total()) with self.assertRaises(BudgetError): ss.fit(X) self.assertEqual((1, 0), acc.total())
Example #6
Source File: test_invalid.py From mabwiser with Apache License 2.0 | 6 votes |
def test_invalid_test_size(self): rng = np.random.RandomState(seed=7) with self.assertRaises(TypeError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=1, batch_size=0, is_ordered=True, seed=7) with self.assertRaises(ValueError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=50.0, batch_size=0, is_ordered=True, seed=7)
Example #7
Source File: test_invalid.py From mabwiser with Apache License 2.0 | 6 votes |
def test_invalid_batch_size(self): rng = np.random.RandomState(seed=7) with self.assertRaises(TypeError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=0.4, batch_size=0.5, is_ordered=True, seed=7) with self.assertRaises(ValueError): Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(10)], rewards=[rng.randint(0, 100) for _ in range(10)], contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=0.4, batch_size=10, is_ordered=True, seed=7)
Example #8
Source File: test_StandardScaler.py From differential-privacy-library with MIT License | 6 votes |
def test_similar_results(self): global_seed(314159) X = np.random.rand(100000, 5) dp_ss = StandardScaler(bounds=(0, 1), epsilon=float("inf")) dp_ss.fit(X) sk_ss = sk_pp.StandardScaler() sk_ss.fit(X) self.assertTrue(np.allclose(dp_ss.mean_, sk_ss.mean_, rtol=1, atol=1e-4), "Arrays %s and %s should be close" % (dp_ss.mean_, sk_ss.mean_)) self.assertTrue(np.allclose(dp_ss.var_, sk_ss.var_, rtol=1, atol=1e-4), "Arrays %s and %s should be close" % (dp_ss.var_, sk_ss.var_)) self.assertTrue(np.all(dp_ss.n_samples_seen_ == sk_ss.n_samples_seen_))
Example #9
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_unordered(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(20)], rewards=[rng.randint(0, 2) for _ in range(20)], contexts=[[rng.rand() for _ in range(5)] for _ in range(20)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=False, seed=7) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions))
Example #10
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_online_quick(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(100)], rewards=[rng.randint(0, 2) for _ in range(100)], contexts=[[rng.rand() for _ in range(5)] for _ in range(100)], scaler=StandardScaler(), test_size=0.4, batch_size=5, is_ordered=True, seed=7, is_quick=True) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions)) self.assertTrue('total' in sim.bandit_to_arm_to_stats_max['0'].keys())
Example #11
Source File: instruments.py From CalibrationNN with GNU General Public License v3.0 | 6 votes |
def random_normal_draw(history, nb_samples, **kwargs): """Random normal distributed draws Arguments: history: numpy 2D array, with history along axis=0 and parameters along axis=1 nb_samples: number of samples to draw Returns: numpy 2D array, with samples along axis=0 and parameters along axis=1 """ scaler = StandardScaler() scaler.fit(history) scaled = scaler.transform(history) sqrt_cov = sqrtm(empirical_covariance(scaled)).real #Draw correlated random variables #draws are generated transposed for convenience of the dot operation draws = np.random.standard_normal((history.shape[-1], nb_samples)) draws = np.dot(sqrt_cov, draws) draws = np.transpose(draws) return scaler.inverse_transform(draws)
Example #12
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_online(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(100)], rewards=[rng.randint(0, 2) for _ in range(100)], contexts=[[rng.rand() for _ in range(5)] for _ in range(100)], scaler=StandardScaler(), test_size=0.4, batch_size=5, is_ordered=True, seed=7) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions)) self.assertTrue('total' in sim.bandit_to_arm_to_stats_max['0'].keys())
Example #13
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_offline_run_n_jobs(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp, n_jobs=2))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para, n_jobs=2))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(20)], rewards=[rng.randint(0, 2) for _ in range(20)], contexts=[[rng.rand() for _ in range(5)] for _ in range(20)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions))
Example #14
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_offline(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(20)], rewards=[rng.randint(0, 2) for _ in range(20)], contexts=[[rng.rand() for _ in range(5)] for _ in range(20)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7)
Example #15
Source File: test_examples.py From mabwiser with Apache License 2.0 | 6 votes |
def test_simulator_mixed(self): size = 100 decisions = [random.randint(0, 2) for _ in range(size)] rewards = [random.randint(0, 1000) for _ in range(size)] contexts = [[random.random() for _ in range(50)] for _ in range(size)] n_jobs = 1 mixed = [('RandomRadius', MAB([0, 1], LearningPolicy.Random(), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs)), ('Random', MAB([0, 1], LearningPolicy.Random(), n_jobs=n_jobs))] sim = Simulator(mixed, decisions, rewards, contexts, scaler=StandardScaler(), test_size=0.5, is_ordered=False, batch_size=0, seed=123456) sim.run() self.assertTrue(sim.bandit_to_confusion_matrices) self.assertTrue(sim.bandit_to_predictions)
Example #16
Source File: test_examples.py From mabwiser with Apache License 2.0 | 6 votes |
def test_simulator_hyper_parameter(self): size = 100 decisions = [random.randint(0, 2) for _ in range(size)] rewards = [random.randint(0, 1000) for _ in range(size)] contexts = [[random.random() for _ in range(50)] for _ in range(size)] n_jobs = 1 hyper_parameter_tuning = [] for radius in range(6, 10): hyper_parameter_tuning.append(('Radius' + str(radius), MAB([0, 1], LearningPolicy.UCB1(1), NeighborhoodPolicy.Radius(radius), n_jobs=n_jobs))) sim = Simulator(hyper_parameter_tuning, decisions, rewards, contexts, scaler=StandardScaler(), test_size=0.5, is_ordered=False, batch_size=0, seed=123456, is_quick=True) sim.run() self.assertTrue(sim.bandit_to_confusion_matrices) self.assertTrue(sim.bandit_to_predictions)
Example #17
Source File: test_linucb.py From mabwiser with Apache License 2.0 | 6 votes |
def test_unused_arm_scaled2(self): context_history = np.array([[0, 1, 2, 3, 5], [1, 1, 1, 1, 1], [0, 0, 1, 0, 0], [0, 2, 2, 3, 5], [1, 3, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 4, 3, 5], [0, 1, 2, 4, 5], [1, 2, 1, 1, 3], [0, 2, 1, 0, 0]], dtype='float64') scaler = StandardScaler() scaled_contexts = scaler.fit_transform(context_history) scaled_predict = scaler.transform(np.array([[0, 1, 2, 3, 5], [1, 1, 1, 1, 1]], dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4], decisions=[1, 1, 1, 2, 2, 3, 3, 3, 3, 3], rewards=[0, 0, 1, 0, 0, 0, 0, 1, 1, 1], learning_policy=LearningPolicy.LinUCB(alpha=1), context_history=scaled_contexts, contexts=scaled_predict, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [4, 4])
Example #18
Source File: DataModule.py From sgd-influence with MIT License | 6 votes |
def fetch(self, n_tr, n_val, n_test, seed=0): x, y = self.load() # split data x_tr, x_val, y_tr, y_val = train_test_split( x, y, train_size=n_tr, test_size=n_val+n_test, random_state=seed) x_val, x_test, y_val, y_test = train_test_split( x_val, y_val, train_size=n_val, test_size=n_test, random_state=seed+1) # process x if self.normalize: scaler = StandardScaler() scaler.fit(x_tr) x_tr = scaler.transform(x_tr) x_val = scaler.transform(x_val) x_test = scaler.transform(x_test) if self.append_one: x_tr = np.c_[x_tr, np.ones(n_tr)] x_val = np.c_[x_val, np.ones(n_val)] x_test = np.c_[x_test, np.ones(n_test)] return (x_tr, y_tr), (x_val, y_val), (x_test, y_test)
Example #19
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 6 votes |
def test_contextual_unordered_online(self): rng = np.random.RandomState(seed=7) bandits = [] counter = 0 for cp in TestSimulator.nps: for lp in TestSimulator.lps: bandits.append((str(counter), MAB([0, 1], lp, cp))) counter += 1 for para in TestSimulator.parametric: bandits.append((str(counter), MAB([0, 1], para))) counter += 1 sim = Simulator(bandits=bandits, decisions=[rng.randint(0, 2) for _ in range(100)], rewards=[rng.randint(0, 2) for _ in range(100)], contexts=[[rng.rand() for _ in range(5)] for _ in range(100)], scaler=StandardScaler(), test_size=0.4, batch_size=5, is_ordered=False, seed=7) sim.run() self.assertTrue(bool(sim.arm_to_stats_total)) self.assertTrue(bool(sim.bandit_to_predictions)) self.assertTrue('total' in sim.bandit_to_arm_to_stats_max['0'].keys())
Example #20
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_nearest(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.UCB1(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.KNearest(k=5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 1]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys())
Example #21
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_linucb_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinUCB(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.Radius(radius=1), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 2])
Example #22
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.UCB1(alpha=1.25), neighborhood_policy=NeighborhoodPolicy.Radius(radius=5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [4, 4]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys())
Example #23
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_lints_knearest(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinTS(alpha=1), neighborhood_policy=NeighborhoodPolicy.KNearest(k=4), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 2])
Example #24
Source File: conv1d_autoencoder.py From keras-anomaly-detection with MIT License | 5 votes |
def preprocess_data(csv_data): credit_card_data = csv_data.drop(labels=['Class', 'Time'], axis=1) credit_card_data['Amount'] = StandardScaler().fit_transform(credit_card_data['Amount'].values.reshape(-1, 1)) # print(credit_card_data.head()) credit_card_np_data = credit_card_data.as_matrix() y_true = csv_data['Class'].as_matrix() return credit_card_np_data, y_true
Example #25
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_lints_radius(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinTS(alpha=0.5), neighborhood_policy=NeighborhoodPolicy.Radius(radius=1), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [1, 2])
Example #26
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_lints(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinTS(alpha=1.5), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 2]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys())
Example #27
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_linucb(self): train_df = pd.DataFrame({'ad': [1, 1, 1, 2, 4, 5, 3, 3, 2, 1, 4, 5, 3, 2, 5], 'revenues': [10, 17, 22, 9, 4, 20, 7, 8, 20, 9, 50, 5, 7, 12, 10], 'age': [22, 27, 39, 48, 21, 20, 19, 37, 52, 26, 18, 42, 55, 57, 38], 'click_rate': [0.2, 0.6, 0.99, 0.68, 0.15, 0.23, 0.75, 0.17, 0.33, 0.65, 0.56, 0.22, 0.19, 0.11, 0.83], 'subscriber': [1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0]} ) # Test data to for new prediction test_df = pd.DataFrame({'age': [37, 52], 'click_rate': [0.5, 0.6], 'subscriber': [0, 1]}) test_df_revenue = pd.Series([7, 13]) # Scale the data scaler = StandardScaler() train = scaler.fit_transform(np.asarray(train_df[['age', 'click_rate', 'subscriber']], dtype='float64')) test = scaler.transform(np.asarray(test_df, dtype='float64')) arms, mab = self.predict(arms=[1, 2, 3, 4, 5], decisions=train_df['ad'], rewards=train_df['revenues'], learning_policy=LearningPolicy.LinUCB(alpha=1.25), context_history=train, contexts=test, seed=123456, num_run=1, is_predict=True) self.assertEqual(arms, [5, 2]) mab.partial_fit(decisions=arms, rewards=test_df_revenue, contexts=test) mab.add_arm(6) self.assertTrue(6 in mab.arms) self.assertTrue(6 in mab._imp.arm_to_expectation.keys())
Example #28
Source File: test_invalid.py From mabwiser with Apache License 2.0 | 5 votes |
def test_invalid_simulator_stats_scope(self): rng = np.random.RandomState(seed=7) decisions = np.array([rng.randint(0, 2) for _ in range(10)]) rewards = np.array([rng.randint(0, 100) for _ in range(10)]) sim = Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=decisions, rewards=rewards, contexts=[[rng.rand() for _ in range(5)] for _ in range(10)], scaler=StandardScaler(), test_size=0.4, batch_size=0, is_ordered=True, seed=7) with self.assertRaises(ValueError): sim._set_stats('validation', decisions, rewards)
Example #29
Source File: test_simulator.py From mabwiser with Apache License 2.0 | 5 votes |
def test_plot_min_net_online(self, mock_show): rng = np.random.RandomState(seed=7) sim = Simulator(bandits=[("example", MAB([0, 1], LearningPolicy.EpsilonGreedy()))], decisions=[rng.randint(0, 2) for _ in range(20)], rewards=[rng.randint(0, 100) for _ in range(20)], contexts=[[rng.rand() for _ in range(5)] for _ in range(20)], scaler=StandardScaler(), test_size=0.4, batch_size=5, is_ordered=True, seed=7) sim.run() sim.plot('min', False)
Example #30
Source File: test_examples.py From mabwiser with Apache License 2.0 | 5 votes |
def test_simulator_contextual(self): size = 100 decisions = [random.randint(0, 2) for _ in range(size)] rewards = [random.randint(0, 1000) for _ in range(size)] contexts = [[random.random() for _ in range(50)] for _ in range(size)] def binarize(decision, reward): if decision == 0: return reward <= 50 else: return reward >= 220 n_jobs = 1 contextual_mabs = [('Random', MAB([0, 1], LearningPolicy.Random(), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs)), ('UCB1', MAB([0, 1], LearningPolicy.UCB1(1), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs)), ('ThompsonSampling', MAB([0, 1], LearningPolicy.ThompsonSampling(binarize), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs)), ('EpsilonGreedy', MAB([0, 1], LearningPolicy.EpsilonGreedy(epsilon=.15), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs)), ('Softmax', MAB([0, 1], LearningPolicy.Softmax(), NeighborhoodPolicy.Radius(10), n_jobs=n_jobs))] sim = Simulator(contextual_mabs, decisions, rewards, contexts, scaler=StandardScaler(), test_size=0.5, is_ordered=False, batch_size=0, seed=123456) sim.run() self.assertTrue(sim.bandit_to_confusion_matrices) self.assertTrue(sim.bandit_to_predictions)