Python Image.fromarray() Examples
The following are 29
code examples of Image.fromarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
Image
, or try the search function
.
Example #1
Source File: convert_to_lmdb.py From tensorflow-recipes with Apache License 2.0 | 5 votes |
def get_data(self): lmdb = "/datasets/celebHQ/celeb_hq.lmdb" ds = LMDBDataPoint(lmdb, shuffle=True) ds = ImageDecode(ds, index=0) ds.reset_state() resample = Image.BICUBIC self.remainingImages = ds.size() for dp in ds.get_data(): # read image bgr = dp[0] # convert to Pil Image and resize rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB) pil_im = Image.fromarray(rgb) pil_im = pil_im.resize((self.image_size, self.image_size), resample=resample) # convert back to opencv fomat resized = np.array(pil_im) resized = resized[:, :, ::-1].copy() # beak for less images self.remainingImages -= 1 print self.remainingImages # if (self.remainingImages < 29950): # break yield [resized]
Example #2
Source File: ChangeHue.py From pokemon with MIT License | 5 votes |
def changeHue(filename, offset): image = Image.open(start_dir+filename) image = image.convert('RGBA') arr = np.array(np.asarray(image).astype('float')) new_img = Image.fromarray(shift_hue(arr, offset/360.).astype('uint8'), 'RGBA') new_img.save(end_dir+filename)
Example #3
Source File: CloudJump2.py From pythonista-scripts with MIT License | 5 votes |
def crop_image(cls, img): image_data = numpy.asarray(img) image_data_bw = image_data.max(axis=2) non_empty_columns = numpy.where(image_data_bw.max(axis=0)>0)[0] non_empty_rows = numpy.where(image_data_bw.max(axis=1)>0)[0] crop_box = (min(non_empty_rows), max(non_empty_rows), min(non_empty_columns), max(non_empty_columns)) image_data_new = image_data[crop_box[0]:crop_box[1]+1, crop_box[2]:crop_box[3]+1, :] img = Image.fromarray(image_data_new) return img
Example #4
Source File: util.py From malmomo with MIT License | 5 votes |
def rgb_to_png_bytes(rgb): img = Image.fromarray(rgb) sio = StringIO.StringIO() img.save(sio, format="png") return sio.getvalue()
Example #5
Source File: transforms.py From deep-learning-from-scratch-3 with MIT License | 5 votes |
def __call__(self, array): data = array.transpose(1, 2, 0) return Image.fromarray(data)
Example #6
Source File: reader.py From Cytomine-python-client with Apache License 2.0 | 5 votes |
def transform_rgb_to_bgr(image): sub = image.convert("RGB") data = np.array(sub) red, green, blue = data.T data = np.array([blue, green, red]) data = data.transpose() return Image.fromarray(data)
Example #7
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 5 votes |
def _save(self): tt = datetime.now() time_string = tt.strftime('%mm-%dd-%Hh-%Mm-%Ss') W = self.model.conv1.W.get_value() W = W.transpose(1, 2, 0, 3) row_list = [] img_list = [] k = 0 rows = W.shape[3] / 16 bar = 0.5 * numpy.ones((W.shape[0], 1, 3)) for i in range(rows): row_list.append(bar) for j in range(16): W0 = W[:, :, :, k] W0 -= W0.min() W0 /= W0.max() # W0[:, :,0] -= W0[:, :,0].min() # W0[:, :,0] /= W0[:, :,0].max() # W0[:, :,1] -= W0[:, :,1].min() # W0[:, :,1] /= W0[:, :,1].max() # W0[:, :,2] -= W0[:, :,2].min() # W0[:, :,2] /= W0[:, :,2].max() row_list.append(W0) row_list.append(bar) k += 1 row_image = numpy.hstack(row_list) row_list = [] bar_h = 0.5 * numpy.ones((1, row_image.shape[1], 3)) img_list.append(bar_h) img_list.append(row_image) img_list.append(bar_h) img_image = numpy.vstack(img_list) to_save = Image.fromarray(numpy.uint8(255 * img_image)) filename = 'filters_' + time_string + '.png' filepath = os.path.join(self.save_path, filename) to_save.save(filepath)
Example #8
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 5 votes |
def _save(self): tt = datetime.now() time_string = tt.strftime('%mm-%dd-%Hh-%Mm-%Ss') sub_path = os.path.join(self.save_path, time_string) if not os.path.exists(sub_path): os.makedirs(sub_path) prediction = self.model.prediction(self.batch) for i in range(128): image = self.batch[:, :, :, i] image = image.transpose(1, 2, 0) recon = numpy.array(prediction[:, :, :, i]) recon = recon.transpose(1, 2, 0) image_array = numpy.uint8(rescale(numpy.hstack((image, recon)))) to_save = Image.fromarray(image_array) filename = 'recon-%02d.jpeg' % i filepath = os.path.join(sub_path, filename) to_save.save(filepath)
Example #9
Source File: generateSpectrograms.py From CNNs-Speech-Music-Discrimination with MIT License | 5 votes |
def createSpectrogramFile(x, Fs, fileName, stWin, stStep): specgramOr, TimeAxis, FreqAxis = aF.stSpectogram(x, Fs, round(Fs * stWin), round(Fs * stStep), False) print specgramOr.shape if inputs[2]=='full': print specgramOr numpy.save(fileName.replace('.png','')+'_spectrogram', specgramOr) else: #specgram = scipy.misc.imresize(specgramOr, float(227.0) / float(specgramOr.shape[0]), interp='bilinear') specgram = cv2.resize(specgramOr,(227, 227), interpolation = cv2.INTER_LINEAR) im1 = Image.fromarray(numpy.uint8(matplotlib.cm.jet(specgram)*255)) scipy.misc.imsave(fileName, im1)
Example #10
Source File: ClassifyWav.py From CNNs-Speech-Music-Discrimination with MIT License | 5 votes |
def mtCNN_classification(signal, Fs, mtWin, mtStep, RGB_singleFrame_net, SOUND_mean_RGB, transformer_RGB, classNamesCNN): mtWin2 = int(mtWin * Fs) mtStep2 = int(mtStep * Fs) stWin = 0.020 stStep = 0.015 N = len(signal) curPos = 0 count = 0 fileNames = [] flagsInd = [] Ps = [] randomString = (''.join(random.SystemRandom().choice(string.ascii_uppercase + string.digits) for _ in range(5))) while (curPos < N): # for each mid-term segment N1 = curPos N2 = curPos + mtWin2 + stStep*Fs if N2 > N: N2 = N xtemp = signal[int(N1):int(N2)] # get mid-term segment specgram, TimeAxis, FreqAxis = aF.stSpectogram(xtemp, Fs, round(Fs * stWin), round(Fs * stStep), False) # compute spectrogram if specgram.shape[0] != specgram.shape[1]: # TODO (this must be dynamic!) break specgram = scipy.misc.imresize(specgram, float(227.0) / float(specgram.shape[0]), interp='bilinear') # resize to 227 x 227 imSpec = Image.fromarray(np.uint8(matplotlib.cm.jet(specgram)*255)) # create image curFileName = randomString + "temp_{0:d}.png".format(count) fileNames.append(curFileName) scipy.misc.imsave(curFileName, imSpec) T1 = time.time() output_classes, outputP = singleFrame_classify_video(curFileName, RGB_singleFrame_net, transformer_RGB, False, classNamesCNN) T2 = time.time() #print T2 - T1 flagsInd.append(classNamesCNN.index(output_classes[0])) Ps.append(outputP[0]) #print flagsInd[-1] curPos += mtStep2 count += 1 return np.array(flagsInd), classNamesCNN, np.array(Ps)
Example #11
Source File: transforms.py From Qualia2.0 with MIT License | 5 votes |
def __call__(self, tensor): data = tensor.asnumpy() data = data[0].transpose(1,2,0) return Image.fromarray(data)
Example #12
Source File: Window.py From launcher with GNU General Public License v2.0 | 5 votes |
def get_open_windows(): gtk.main_iteration_do(False) screen = wnck.screen_get_default() screen.force_update() win = screen.get_windows_stacked() windows=[] for w in win: if 'NORMAL' in str(w.get_window_type()): if "ducklauncher!!!"==w.get_name(): pass elif w.is_sticky()!=True and "ducklauncher!!"!=w.get_name(): window={} window['id']=w.get_xid() window['title'] =w.get_name() window['app']=w.get_application().get_name() #print w.get_class_group().get_name() ico = Apps.ico_from_app(w.get_application().get_icon_name()) if ico==None: ico = Apps.ico_from_app(w.get_application().get_name()) if ico==None: pix=w.get_icon() pix= pix.scale_simple(128,128,gtk.gdk.INTERP_HYPER) ico_data= pix.get_pixels_array() img = Image.fromarray(ico_data, 'RGBA') home = os.path.expanduser("~")+"/.duck" try: os.stat(home) except: os.mkdir(home) #print window img_name=str(window["title"]).replace(" ","").replace(".","").lower() img_path="{0}/{1}.png".format(home,img_name) img.save(img_path) ico=img_path window['icon']=ico windows.append(window) return windows
Example #13
Source File: page_elements2.py From namsel with MIT License | 5 votes |
def draw_hough_outline(self, arr): arr = invert_bw(arr) # import Image # Image.fromarray(arr*255).show() # h = cv.HoughLinesP(arr, 2, np.pi/4, 5, minLineLength=arr.shape[0]*.10) h = cv.HoughLinesP(arr, 2, np.pi/4, 1, minLineLength=arr.shape[0]*.15, maxLineGap=5) #This # h = cv.HoughLinesP(arr, 2, np.pi/4, 1, minLineLength=arr.shape[0]*.15, maxLineGap=1) # h = cv.HoughLinesP(arr, 2, np.pi/4, 1, minLineLength=arr.shape[0]*.15) PI_O4 = np.pi/4 # if h and h.any(): # if self._page_type == 'pecha': # color = 1 # thickness = 10 # else: # Attempt to erase horizontal lines if page_type == book. # # Why? Horizontal lines can break LineCluster if they are broken # # e.g. couldn't be filtered out prior to line_breaker.py # color = 0 # thickness = 10 if h is not None: for line in h[0]: new = (line[2]-line[0], line[3] - line[1]) val = (new[0]/np.sqrt(np.dot(new, new))) theta = np.arccos(val) if theta >= PI_O4: # Vertical line # print line[1] - line[3] # cv.line(arr, (line[0], 0), (line[0], arr.shape[0]), 1, thickness=10) if line[0] < .5*arr.shape[1]: arr[:,:line[0]+12] = 0 else: arr[:,line[0]-12:] = 0 else: # horizontal line if line[2] - line[0] >= .15 * arr.shape[1]: # cv.line(arr, (0, line[1]), (arr.shape[1], line[1]), 1, thickness=50) if line[1] < .5 *arr.shape[0]: arr[:line[1]+17, :] = 0 else: arr[line[1]-5:,:] = 0 return ((arr*-1)+1).astype(np.uint8)
Example #14
Source File: overfeat_wrapper.py From sklearn-theano with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_overfeat_output_raw(img_arr, layer_id, largenet, overfeatcmd=None, net_weight_file=None, overfeat_dir=None, architecture='linux_64'): if img_arr.dtype != np.uint8: raise ValueError('Please convert image to uint8') if img_arr.shape[2] != 3: raise ValueError('Last dimension must index color') overfeatcmd = get_overfeat_cmd(overfeatcmd, overfeat_dir, architecture) net_weight_file = get_net_weights(net_weight_file, largenet, overfeat_dir=overfeat_dir) image = Image.fromarray(img_arr) buf = StringIO.StringIO() image.save(buf, format='ppm') buf.seek(0) command = overfeatcmd + " " + net_weight_file + " -1 %d %d" % ( int(largenet), layer_id) p = subprocess.Popen( command.split(' '), stdin=subprocess.PIPE, stdout=subprocess.PIPE) output = p.communicate(input=buf.buf)[0] return output
Example #15
Source File: train_MixModel_VAE-2StochLayers.py From mixture_density_VAEs with MIT License | 5 votes |
def sample_from_model(model, param_file_path, vae_hyperParams, image_file_path, nImages=100): # get op to load the model persister = tf.train.Saver() with tf.Session() as s: persister.restore(s, param_file_path) sample_list = s.run(model.get_samples(nImages)) for i, samples in enumerate(sample_list): image = Image.fromarray(tile_raster_images(X=samples, img_shape=(28, 28), tile_shape=(int(np.sqrt(nImages)), int(np.sqrt(nImages))), tile_spacing=(1, 1))) image.save(image_file_path+"_component"+str(i)+".png")
Example #16
Source File: train_reg_gaussVAE.py From mixture_density_VAEs with MIT License | 5 votes |
def sample_from_model(model, param_file_path, vae_hyperParams, image_file_path, nImages=100): # get op to load the model persister = tf.train.Saver() with tf.Session() as s: persister.restore(s, param_file_path) samples = s.run(model.get_samples(nImages)) image = Image.fromarray(tile_raster_images(X=samples, img_shape=(28, 28), tile_shape=(int(np.sqrt(nImages)), int(np.sqrt(nImages))), tile_spacing=(1, 1))) image.save(image_file_path+".png")
Example #17
Source File: train_DP_VAE.py From mixture_density_VAEs with MIT License | 5 votes |
def sample_from_model(model, param_file_path, vae_hyperParams, image_file_path, nImages=100): # get op to load the model persister = tf.train.Saver() with tf.Session() as s: persister.restore(s, param_file_path) sample_list = s.run(model.get_samples(nImages)) for i, samples in enumerate(sample_list): image = Image.fromarray(tile_raster_images(X=samples, img_shape=(28, 28), tile_shape=(int(np.sqrt(nImages)), int(np.sqrt(nImages))), tile_spacing=(1, 1))) image.save(image_file_path+"_component"+str(i)+".png")
Example #18
Source File: train_MixModel_VAE_vCollapsed.py From mixture_density_VAEs with MIT License | 5 votes |
def sample_from_model(model, param_file_path, vae_hyperParams, image_file_path, nImages=100): # get op to load the model persister = tf.train.Saver() with tf.Session() as s: persister.restore(s, param_file_path) sample_list = s.run(model.get_samples(nImages)) for i, samples in enumerate(sample_list): image = Image.fromarray(tile_raster_images(X=samples, img_shape=(28, 28), tile_shape=(int(np.sqrt(nImages)), int(np.sqrt(nImages))), tile_spacing=(1, 1))) image.save(image_file_path+"_component"+str(i)+".png")
Example #19
Source File: screenshot_image.py From iris with Mozilla Public License 2.0 | 5 votes |
def get_gray_image(self): """Getter for the gray_image property.""" return Image.fromarray(self._gray_array)
Example #20
Source File: screenshot_image.py From iris with Mozilla Public License 2.0 | 5 votes |
def get_raw_image(self): """Getter raw_image property.""" return Image.fromarray(self._raw_image)
Example #21
Source File: pattern.py From iris with Mozilla Public License 2.0 | 5 votes |
def _get_image_from_array(scale: int, array) -> Image: """Converts a scaled array into Image.""" if scale is None or array is None: return None return Image.fromarray(_apply_scale(scale, array))
Example #22
Source File: graphics.py From spectral with MIT License | 5 votes |
def make_pil_image(*args, **kwargs): '''Creates a PIL Image object. USAGE: make_pil_image(source [, bands] [stretch=True] [stretch_all=False], [bounds = (lower, upper)] ) See `get_rgb` for description of arguments. ''' try: from PIL import Image, ImageDraw except ImportError: import Image import ImageDraw rgb = get_rgb(*args, **kwargs) rgb = (rgb * 255).astype(np.ubyte) img = Image.fromarray(rgb) return img
Example #23
Source File: page_elements2.py From namsel with MIT License | 5 votes |
def _draw_new_page(self): self.page_array = np.ones_like(self.img_arr) self.tall = set([i for i in self.get_indices() if self.get_boxes()[i][3] > 3*self.char_mean]) # cv.drawContours(self.page_array, [self.contours[i] for i in # self.get_indices() if self.get_boxes()[i][2] <= self.tsek_mean + 3*self.tsek_std], # -1,0, thickness = -1) # # # self.page_array = cv.medianBlur(self.page_array, 19) # # cv.drawContours(self.page_array, [self.contours[i] for i in # self.get_indices() if self.get_boxes()[i][2] <= self.tsek_mean + 3*self.tsek_std], # -1,0, thickness = -1) cv.drawContours(self.page_array, [self.contours[i] for i in range(len(self.contours)) if self.get_boxes()[i][2] > self.smlmean + 3*self.smstd], -1,0, thickness = -1) # cv.drawContours(self.page_array, [self.contours[i] for i in # self.get_indices() if self.get_boxes()[i][3] <= 2*self.char_mean], # -1,0, thickness = -1) # cv.erode(self.page_array, None, self.page_array, iterations=2) # self.page_array = cv.morphologyEx(self.page_array, cv.MORPH_CLOSE, None,iterations=2) import Image Image.fromarray(self.page_array*255).show() # raw_input() # cv.dilate(self.page_array, None, self.page_array, iterations=1)
Example #24
Source File: kmeans.py From python-dominant-image-colour with BSD 2-Clause "Simplified" License | 5 votes |
def showClustering(self): localPixels = [None] * len(self.image.getdata()) for idx, pixel in enumerate(self.pixels): shortest = float('Inf') for cluster in self.clusters: distance = self.calcDistance(cluster.centroid, pixel) if distance < shortest: shortest = distance nearest = cluster localPixels[idx] = nearest.centroid w, h = self.image.size localPixels = numpy.asarray(localPixels)\ .astype('uint8')\ .reshape((h, w, 3)) colourMap = Image.fromarray(localPixels) colourMap.show()
Example #25
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 4 votes |
def _save(self): tt = datetime.now() time_string = tt.strftime('%mm-%dd-%Hh-%Mm-%Ss') sub_path = os.path.join(self.save_path, time_string) if not os.path.exists(sub_path): os.makedirs(sub_path) prediction = self.model.prediction(self.batch) for i in range(128): image = deepcopy(self.batch[:, :, :, i]) image = image.transpose(1, 2, 0) image_min = image.min() image -= image_min image_max = image.max() image /= image_max image *= 255 recon = numpy.array(prediction[:, :, :, i]) recon = recon.transpose(1, 2, 0) recon2 = deepcopy(recon) * 1.0 recon_mask = (numpy.sum(recon == 0.0, axis=2) < 3) # recon_mask = 255*(numpy.tile(recon_mask[:, :,None],(1,1,3))) recon_mask = 255 * (numpy.tile(recon_mask[:, :, None], (1, 1, image.shape[2]))) recon -= image_min recon /= image_max recon *= 255 recon2 -= recon2.min() recon2 /= recon2.max() recon2 *= 255 image_array = numpy.uint8(numpy.hstack((image, recon, recon2, recon_mask))) to_save = Image.fromarray(image_array) filename = 'recon-%02d.jpeg' % i filepath = os.path.join(sub_path, filename) to_save.save(filepath)
Example #26
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 4 votes |
def _save(self): tt = datetime.now() time_string = tt.strftime('%mm-%dd-%Hh-%Mm-%Ss') sub_path = os.path.join(self.save_path, time_string) if not os.path.exists(sub_path): os.makedirs(sub_path) prediction = self.model.prediction(self.batch) for i in range(self.batch.shape[3]): image = deepcopy(self.batch[:, :, :, i]) image = image.transpose(1, 2, 0) image_min = image.min() image -= image_min image_max = image.max() image /= image_max image *= 255 recon = numpy.array(prediction[:, :, :, i]) recon = recon.transpose(1, 2, 0) recon2 = deepcopy(recon) * 1.0 recon_mask = (numpy.sum(recon == 0.0, axis=2) < 3) recon_mask = 255 * (numpy.tile(recon_mask[:, :, None], (1, 1, image.shape[2]))) recon -= image_min recon /= image_max recon *= 255 recon2 -= recon2.min() recon2 /= recon2.max() recon2 *= 255 image_array = numpy.uint8(numpy.hstack((image, recon, recon2, recon_mask))) # Needed for grayscale images. If color, has no effect. image_array = numpy.tile(image_array, (1, 1, 3)) to_save = Image.fromarray(image_array) filename = 'recon-%02d.jpeg' % i filepath = os.path.join(sub_path, filename) to_save.save(filepath)
Example #27
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 4 votes |
def _save(self): tt = datetime.now() time_string = tt.strftime('%mm-%dd-%Hh-%Mm-%Ss') W = self.model.conv1.W.get_value() W = W.transpose(1, 2, 0, 3) row_list = [] img_list = [] k = 0 rows = W.shape[3] / 16 bar = 0.5 * numpy.ones((W.shape[0], 1, 3)) for i in range(rows): row_list.append(bar) for j in range(16): W0 = W[:, :, :, k] W0 -= W0.min() W0 /= W0.max() W0 = numpy.tile(W0, (1, 1, 3)) # W0[:, :,0] -= W0[:, :,0].min() # W0[:, :,0] /= W0[:, :,0].max() # W0[:, :,1] -= W0[:, :,1].min() # W0[:, :,1] /= W0[:, :,1].max() # W0[:, :,2] -= W0[:, :,2].min() # W0[:, :,2] /= W0[:, :,2].max() row_list.append(W0) row_list.append(bar) k += 1 row_image = numpy.hstack(row_list) row_list = [] bar_h = 0.5 * numpy.ones((1, row_image.shape[1], 3)) img_list.append(bar_h) img_list.append(row_image) img_list.append(bar_h) img_image = numpy.vstack(img_list) to_save = Image.fromarray(numpy.uint8(255 * img_image)) filename = 'filters_' + time_string + '.png' filepath = os.path.join(self.save_path, filename) to_save.save(filepath)
Example #28
Source File: vis.py From retrieval-2016-deepvision with MIT License | 4 votes |
def create_thumb(self,im): x = 800 y = 800 size = (y,x) image = Image.fromarray(im) image.thumbnail(size, Image.ANTIALIAS) background = Image.new('RGBA', size, "black") background.paste(image, ((size[0] - image.size[0]) / 2, (size[1] - image.size[1]) / 2)) return np.array(background)[:,:,0:3]
Example #29
Source File: dataset_tc.py From DEMUD with Apache License 2.0 | 4 votes |
def plot_item(self, m, ind, x, r, k, label, U, scores): """plot_item(self, m, ind, x, r, k, label, U, scores) Plot selection m (index ind, data in x) and its reconstruction r, with k and label to annotate the plot. U and scores are optional; ignored in this method, used in some classes' submethods. """ if x == [] or r == []: print "Error: No data in x and/or r." return im = Image.fromarray(x.reshape(self.winsize, self.winsize, 3)) outdir = os.path.join('results', self.name) if not os.path.exists(outdir): os.mkdir(outdir) figfile = os.path.join(outdir, '%s-sel-%d-k-%d.pdf' % (self.name, m, k)) im.save(figfile) print 'Wrote plot to %s' % figfile # record the selections in order, at their x,y coords # subtract selection number from n so first sels have high values mywidth = self.width - self.winsize myheight = self.height - self.winsize # set all unselected items to a value 1 less than the latest priority = mywidth*myheight - m if priority < 2: priority = 2 self.selections[np.where(self.selections < priority)] = priority-2 (y,x) = map(int, label.strip('()').split(',')) #self.selections[ind/mywidth, ind%myheight] = priority qtrwin = self.winsize/8 self.selections[y-qtrwin:y+qtrwin, x-qtrwin:x+qtrwin] = priority pylab.clf() pylab.imshow(self.image) pylab.hold(True) #pylab.imshow(self.selections) masked_sels = np.ma.masked_where(self.selections < priority, self.selections) pylab.imshow(masked_sels, interpolation='none', alpha=0.5) #figfile = '%s/%s-priority-%d-k-%d.pdf' % (outdir, self.name, m, k) # Has to be .png or the alpha transparency doesn't work! (pdf) figfile = os.path.join(outdir, '%s-priority-k-%d.png' % (self.name, k)) pylab.savefig(figfile) print 'Wrote selection priority plot to %s' % figfile