Python theano.tensor.zeros_like() Examples
The following are 30
code examples of theano.tensor.zeros_like().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
theano.tensor
, or try the search function
.
Example #1
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def ctc_path_probs(predict, Y, alpha=1e-4): smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0] L = T.log(smoothed_predict) zeros = T.zeros_like(L[0]) log_first = zeros f_skip_idxs = ctc_create_skip_idxs(Y) b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) # there should be a shortcut to calculating this def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev): f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev) b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev) return f_active_next, log_f_next, b_active_next, log_b_next [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan( step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first]) idxs = T.arange(L.shape[1]).dimshuffle('x', 0) mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1] log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L return log_probs, mask
Example #2
Source File: basic.py From D-VAE with MIT License | 6 votes |
def sp_zeros_like(x): """ Construct a sparse matrix of zeros. Parameters ---------- x Sparse matrix to take the shape. Returns ------- A sparse matrix The same as `x` with zero entries for all element. """ # TODO: don't restrict to CSM formats _, _, indptr, shape = csm_properties(x) return CSM(format=x.format)(data=numpy.array([], dtype=x.type.dtype), indices=numpy.array([], dtype='int32'), indptr=tensor.zeros_like(indptr), shape=shape)
Example #3
Source File: mujoco_costs.py From adversarial-policies with MIT License | 6 votes |
def __init__(self): def f(x, u, i, terminal): if terminal: ctrl_cost = T.zeros_like(x[..., 0]) else: ctrl_cost = T.square(u).sum(axis=-1) # penalize large control # x: (batch_size, 4), concatenation of qpos & qvel angle = x[..., 1] # pendulum rotation ang_cost = angle * angle # penalize large angles vel = x[..., 2:4] vel_cost = T.square(vel).sum(axis=-1) # penalize large velocities # Try and keep the pendulum as upright as possible, # without too rapid movement. cost = ang_cost + 1e-1 * vel_cost + 1e-1 * ctrl_cost return cost super().__init__(f, state_size=4, action_size=1)
Example #4
Source File: basic.py From D-VAE with MIT License | 6 votes |
def grad(self, inputs, g): # g[1:] is all integers, so their Jacobian in this op # is 0. We thus don't need to worry about what their values # are. # if g[0] is disconnected, then this op doesn't contribute # any gradient anywhere. but we know that at least one of # g[1:] is connected, or this grad method wouldn't have been # called, so we should report zeros (csm,) = inputs if isinstance(g[0].type, DisconnectedType): return [csm.zeros_like()] data, indices, indptr, shape = csm_properties(csm) return [CSM(csm.format)(g[0], indices, indptr, shape)] # don't make this a function or it breaks some optimizations below
Example #5
Source File: basic.py From D-VAE with MIT License | 6 votes |
def grad(self, inputs, outputs_gradients): gz = outputs_gradients[0] if gz.dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if inputs[0].dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if gz.dtype in discrete_dtypes: if inputs[0].dtype in discrete_dtypes: return [inputs[0].zeros_like(dtype=theano.config.floatX)] else: return [inputs[0].zeros_like()] else: if inputs[0].dtype in discrete_dtypes: return [gz] else: return [Cast(inputs[0].dtype)(gz)]
Example #6
Source File: util.py From gated-graph-transformer-network with MIT License | 6 votes |
def reduce_log_sum(tensor, axis=None, guaranteed_finite=False): """ Sum probabilities in the log domain, i.e return log(e^vec[0] + e^vec[1] + ...) = log(e^x e^(vec[0]-x) + e^x e^(vec[1]-x) + ...) = log(e^x [e^(vec[0]-x) + e^(vec[1]-x) + ...]) = log(e^x) + log(e^(vec[0]-x) + e^(vec[1]-x) + ...) = x + log(e^(vec[0]-x) + e^(vec[1]-x) + ...) For numerical stability, we choose x = max(vec) Note that if x is -inf, that means all values are -inf, so the answer should be -inf. In this case, choose x = 0 """ maxval = T.max(tensor, axis) maxval_full = T.max(tensor, axis, keepdims=True) if not guaranteed_finite: maxval = T.switch(T.isfinite(maxval), maxval, T.zeros_like(maxval)) maxval_full = T.switch(T.isfinite(maxval_full), maxval_full, T.zeros_like(maxval_full)) reduced_sum = T.sum(T.exp(tensor - maxval_full), axis) logsum = maxval + T.log(reduced_sum) return logsum
Example #7
Source File: mujoco_costs.py From adversarial-policies with MIT License | 6 votes |
def __init__(self): def f(x, u, i, terminal): if terminal: ctrl_cost = T.zeros_like(x[..., 0]) else: ctrl_cost = T.square(u).sum(axis=-1) # x: (batch_size, 8) # x[..., 0:4]: qpos # x[..., 4:8]: qvel, time derivatives of qpos, not used in the cost. theta = x[..., 0] # qpos[0]: angle of joint 0 phi = x[..., 1] # qpos[1]: angle of joint 1 target_xpos = x[..., 2:4] # qpos[2:4], target x & y coordinate body1_xpos = 0.1 * T.stack([T.cos(theta), T.sin(theta)], axis=1) tip_xpos_incr = 0.11 * T.stack([T.cos(phi), T.sin(phi)], axis=1) tip_xpos = body1_xpos + tip_xpos_incr delta = tip_xpos - target_xpos state_cost = T.sqrt(T.sum(delta * delta, axis=-1)) cost = state_cost + ctrl_cost return cost super().__init__(f, state_size=8, action_size=2)
Example #8
Source File: test_basic_ops.py From D-VAE with MIT License | 6 votes |
def test_gpujoin_gpualloc(): a = T.fmatrix('a') a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32') b = T.fmatrix('b') b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32') f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_without_gpu) f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)), mode=mode_with_gpu) f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_with_gpu) assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2 assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, B.GpuAlloc) for node in f_gpu.maker.fgraph.toposort()]) == 2 assert sum([node.op == B.gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, B.GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()]) == 2 assert sum([node.op == B.gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1 assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
Example #9
Source File: test_basic_ops.py From D-VAE with MIT License | 6 votes |
def test_gpujoin_gpualloc(): a = T.fmatrix('a') a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32') b = T.fmatrix('b') b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32') f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_without_gpu) f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)), mode=mode_with_gpu) f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_with_gpu) assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2 assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu.maker.fgraph.toposort()]) == 2 assert sum([node.op == gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()]) == 2 assert sum([node.op == gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1 assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
Example #10
Source File: dialog_encdec.py From hred-latent-piecewise with GNU General Public License v3.0 | 6 votes |
def build_mf_reset_function(self): if not hasattr(self, 'mf_reset_fn'): # Compile functions logger.debug("Building mean field reset function") mf_reset_update = [] if self.add_latent_gaussian_per_utterance: mf_reset_update.append((self.latent_gaussian_utterance_variable_approx_posterior_mean_mfbias, T.zeros_like(self.latent_gaussian_utterance_variable_approx_posterior_mean_mfbias))) mf_reset_update.append((self.latent_gaussian_utterance_variable_approx_posterior_var_mfbias, T.zeros_like(self.latent_gaussian_utterance_variable_approx_posterior_var_mfbias))) if self.add_latent_piecewise_per_utterance: mf_reset_update.append((self.latent_piecewise_utterance_variable_approx_posterior_alpha_mfbias, T.zeros_like(self.latent_piecewise_utterance_variable_approx_posterior_alpha_mfbias))) self.mf_reset_fn = theano.function(inputs=[], outputs=[], updates=mf_reset_update, on_unused_input='warn', name="mf_reset_fn") return self.mf_reset_fn # Batch saliency evaluation function.
Example #11
Source File: optim.py From iaf with MIT License | 6 votes |
def AdaMax(w, objective, alpha=.01, beta1=.1, beta2=.001): print 'AdaMax', 'alpha:',alpha,'beta1:',beta1,'beta2:',beta2 g = T.grad(objective.sum(), w, disconnected_inputs='warn') new = OrderedDict() for i in range(len(w)): #gi = T.switch(T.isnan(gi),T.zeros_like(gi),gi) #remove NaN's mom1 = G.sharedf(w[i].get_value() * 0.) _max = G.sharedf(w[i].get_value() * 0.) new[mom1] = (1-beta1) * mom1 + beta1 * g[i] new[_max] = T.maximum((1-beta2)*_max, abs(g[i]) + 1e-8) new[w[i]] = w[i] + alpha * new[mom1] / new[_max] return new # AdaMax that averages over multiple minibatches
Example #12
Source File: theano_backend.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def batch_normalization(x, mean, var, beta, gamma, axis=-1, epsilon=1e-3): """Apply batch normalization on x given mean, var, beta and gamma. """ # TODO remove this if statement when Theano without # T.nnet.bn.batch_normalization_test is deprecated if not hasattr(T.nnet.bn, 'batch_normalization_test'): return _old_batch_normalization(x, mean, var, beta, gamma, epsilon) if gamma is None: gamma = ones_like(var) if beta is None: beta = zeros_like(mean) if mean.ndim == 1: # based on TensorFlow's default: normalize along rightmost dimension reduction_axes = list(range(x.ndim - 1)) else: reduction_axes = [i for i in range(x.ndim) if mean.broadcastable[i]] return T.nnet.bn.batch_normalization_test( x, gamma, beta, mean, var, reduction_axes, epsilon) # TODO remove this function when Theano without # T.nnet.bn.batch_normalization_train is deprecated
Example #13
Source File: theano_backend.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def ctc_path_probs(predict, Y, alpha=1e-4): smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0] L = T.log(smoothed_predict) zeros = T.zeros_like(L[0]) log_first = zeros f_skip_idxs = ctc_create_skip_idxs(Y) b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) # there should be a shortcut to calculating this def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev): f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev) b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev) return f_active_next, log_f_next, b_active_next, log_b_next [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan( step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first]) idxs = T.arange(L.shape[1]).dimshuffle('x', 0) mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1] log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L return log_probs, mask
Example #14
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def batch_normalization(x, mean, var, beta, gamma, epsilon=1e-3): """Apply batch normalization on x given mean, var, beta and gamma. """ # TODO remove this if statement when Theano without # T.nnet.bn.batch_normalization_test is deprecated if not hasattr(T.nnet.bn, 'batch_normalization_test'): return _old_batch_normalization(x, mean, var, beta, gamma, epsilon) if gamma is None: gamma = ones_like(var) if beta is None: beta = zeros_like(mean) if mean.ndim == 1: # based on TensorFlow's default: normalize along rightmost dimension reduction_axes = list(range(x.ndim - 1)) else: reduction_axes = [i for i in range(x.ndim) if mean.broadcastable[i]] return T.nnet.bn.batch_normalization_test( x, gamma, beta, mean, var, reduction_axes, epsilon) # TODO remove this function when Theano without # T.nnet.bn.batch_normalization_train is deprecated
Example #15
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Computes mean and std for batch then apply batch_normalization on batch. """ # TODO remove this if statement when Theano without # T.nnet.bn.batch_normalization_train is deprecated if not hasattr(T.nnet.bn, 'batch_normalization_train'): return _old_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon) if gamma is None: if beta is None: gamma = ones_like(x) else: gamma = ones_like(beta) if beta is None: if gamma is None: beta = zeros_like(x) beta = zeros_like(gamma) normed, mean, stdinv = T.nnet.bn.batch_normalization_train( x, gamma, beta, reduction_axes, epsilon) return normed, mean, T.inv(stdinv ** 2)
Example #16
Source File: aggregation.py From attention-lvcsr with MIT License | 6 votes |
def get_aggregator(self): initialized = shared_like(0.) expression_acc = shared_like(self.expression) # Dummy default expression to use as the previously-accumulated # value, that has the same shape as the new result expression_zeros = tensor.as_tensor(self.expression).zeros_like() conditional_update_expr = self.expression + ifelse(initialized, expression_acc, expression_zeros) initialization_updates = [(expression_acc, tensor.zeros_like(expression_acc)), (initialized, 0.)] accumulation_updates = [(expression_acc, conditional_update_expr), (initialized, 1.)] aggregator = Aggregator(aggregation_scheme=self, initialization_updates=initialization_updates, accumulation_updates=accumulation_updates, readout_variable=(expression_acc)) return aggregator
Example #17
Source File: test_basic_ops.py From attention-lvcsr with MIT License | 6 votes |
def test_gpujoin_gpualloc(): a = T.fmatrix('a') a_val = numpy.asarray(numpy.random.rand(4, 5), dtype='float32') b = T.fmatrix('b') b_val = numpy.asarray(numpy.random.rand(3, 5), dtype='float32') f = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_without_gpu) f_gpu = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)), mode=mode_with_gpu) f_gpu2 = theano.function([a, b], T.join(0, T.zeros_like(a), T.ones_like(b)) + 4, mode=mode_with_gpu) assert sum([node.op == T.alloc for node in f.maker.fgraph.toposort()]) == 2 assert sum([node.op == T.join for node in f.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu.maker.fgraph.toposort()]) == 2 assert sum([node.op == gpu_join for node in f_gpu.maker.fgraph.toposort()]) == 1 assert sum([isinstance(node.op, GpuAlloc) for node in f_gpu2.maker.fgraph.toposort()]) == 2 assert sum([node.op == gpu_join for node in f_gpu2.maker.fgraph.toposort()]) == 1 assert numpy.allclose(f(a_val, b_val), f_gpu2(a_val, b_val))
Example #18
Source File: basic.py From attention-lvcsr with MIT License | 6 votes |
def grad(self, inputs, outputs_gradients): gz = outputs_gradients[0] if gz.dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if inputs[0].dtype in complex_dtypes: raise NotImplementedError("grad not implemented for complex types") if gz.dtype in discrete_dtypes: if inputs[0].dtype in discrete_dtypes: return [inputs[0].zeros_like(dtype=theano.config.floatX)] else: return [inputs[0].zeros_like()] else: if inputs[0].dtype in discrete_dtypes: return [gz] else: return [Cast(inputs[0].dtype)(gz)]
Example #19
Source File: basic.py From attention-lvcsr with MIT License | 6 votes |
def grad(self, inputs, g): # g[1:] is all integers, so their Jacobian in this op # is 0. We thus don't need to worry about what their values # are. # if g[0] is disconnected, then this op doesn't contribute # any gradient anywhere. but we know that at least one of # g[1:] is connected, or this grad method wouldn't have been # called, so we should report zeros (csm,) = inputs if isinstance(g[0].type, DisconnectedType): return [csm.zeros_like()] data, indices, indptr, shape = csm_properties(csm) return [CSM(csm.format)(g[0], indices, indptr, shape)] # don't make this a function or it breaks some optimizations below
Example #20
Source File: basic.py From attention-lvcsr with MIT License | 6 votes |
def sp_zeros_like(x): """ Construct a sparse matrix of zeros. Parameters ---------- x Sparse matrix to take the shape. Returns ------- A sparse matrix The same as `x` with zero entries for all element. """ # TODO: don't restrict to CSM formats _, _, indptr, shape = csm_properties(x) return CSM(format=x.format)(data=numpy.array([], dtype=x.type.dtype), indices=numpy.array([], dtype='int32'), indptr=tensor.zeros_like(indptr), shape=shape)
Example #21
Source File: theano_backend.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def ctc_path_probs(predict, Y, alpha=1e-4): smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0] L = T.log(smoothed_predict) zeros = T.zeros_like(L[0]) log_first = zeros f_skip_idxs = ctc_create_skip_idxs(Y) b_skip_idxs = ctc_create_skip_idxs(Y[::-1]) # there should be a shortcut to calculating this def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev): f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev) b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev) return f_active_next, log_f_next, b_active_next, log_b_next [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan( step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first]) idxs = T.arange(L.shape[1]).dimshuffle('x', 0) mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1] log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L return log_probs, mask
Example #22
Source File: theano_backend.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon=1e-3): """Computes mean and std for batch then apply batch_normalization on batch. """ # TODO remove this if statement when Theano without # T.nnet.bn.batch_normalization_train is deprecated if not hasattr(T.nnet.bn, 'batch_normalization_train'): return _old_normalize_batch_in_training(x, gamma, beta, reduction_axes, epsilon) if gamma is None: if beta is None: gamma = ones_like(x) else: gamma = ones_like(beta) if beta is None: if gamma is None: beta = zeros_like(x) beta = zeros_like(gamma) normed, mean, stdinv = T.nnet.bn.batch_normalization_train( x, gamma, beta, reduction_axes, epsilon) return normed, mean, T.inv(stdinv ** 2)
Example #23
Source File: theano_backend.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def zeros_like(x, dtype=None, name=None): return T.zeros_like(x, dtype=dtype)
Example #24
Source File: basic.py From attention-lvcsr with MIT License | 5 votes |
def zeros_like(model): return sp_zeros_like(model)
Example #25
Source File: mujoco_costs.py From adversarial-policies with MIT License | 5 votes |
def __init__(self, ctrl_coef=1e-1): def f(x, u, i, terminal): # Original Gym does not impose a control cost, but does clip it # to [-1, 1]. This non-linear dynamics is hard for iLQG to handle, # so add a quadratic control penalty instead. if terminal: ctrl_cost = T.zeros_like(x[..., 0]) else: ctrl_cost = T.square(u).sum(axis=-1) # x: (batch_size, 6), concatenation of qpos & qvel # Distance cost # The tricky part is finding Cartesian coords of pole tip. base_x = x[..., 0] # qpos[0]: x axis of the slider hinge1_ang = x[..., 1] # qpos[1]: angle of the first hinge hinge2_ang = x[..., 2] # qpos[2]: angle of the second hinge hinge2_cum_ang = hinge1_ang + hinge2_ang # 0 degrees is y=1, x=0; rotates clockwise. hinge1_x, hinge1_y = T.sin(hinge1_ang), T.cos(hinge1_ang) hinge2_x, hinge2_y = T.sin(hinge2_cum_ang), T.cos(hinge2_cum_ang) tip_x = base_x + hinge1_x + hinge2_x tip_y = hinge1_y + hinge2_y dist_cost = 0.01 * T.square(tip_x) + T.square(tip_y - 2) # Velocity cost v1 = x[..., 4] # qvel[1] v2 = x[..., 5] # qvel[2] vel_cost = 1e-3 * T.square(v1) + 5e-3 * T.square(v2) # TODO: termination penalty? (shouldn't change optimal policy?) dist_below = T.max([T.zeros_like(tip_y), 1.1 - tip_y], axis=0) termination_cost = T.square(dist_below) cost = 5 * termination_cost + dist_cost + vel_cost + ctrl_coef * ctrl_cost return cost super().__init__(f, state_size=6, action_size=1)
Example #26
Source File: toolbox.py From Theano-Lights with MIT License | 5 votes |
def gaussian(shape, std=0.): if std > 0: return srnd.normal(shape, std = std, dtype=theano.config.floatX) else: return T.zeros_like(shape, dtype=theano.config.floatX)
Example #27
Source File: theano_extensions.py From hred-qs with BSD 3-Clause "New" or "Revised" License | 5 votes |
def grad(self, ins, outgrads): pvals, unis = ins (gz,) = outgrads return [T.zeros_like(x) for x in ins]
Example #28
Source File: hybrid_training.py From FRRN with MIT License | 5 votes |
def get_gradient_variables(params): """Creates a new tensor for each input tensor. Args: params: A list of tensors. Returns: A list of zero-initialized tensors of the same shapes. """ return [T.zeros_like(p) for p in params]
Example #29
Source File: language_models.py From attention-lvcsr with MIT License | 5 votes |
def emit(self, readouts): # Non-sense, but the returned result should never be used. return tensor.zeros_like(readouts[:, 0], dtype='int64')
Example #30
Source File: multinomial.py From attention-lvcsr with MIT License | 5 votes |
def grad(self, ins, outgrads): pvals, unis, n = ins (gz,) = outgrads return [T.zeros_like(x, dtype=theano.config.floatX) if x.dtype in T.discrete_dtypes else T.zeros_like(x) for x in ins]