Python numpy.fromfile() Examples
The following are 30
code examples of numpy.fromfile().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: utils.py From deep-learning-note with MIT License | 9 votes |
def parse_data(path, dataset, flatten): if dataset != 'train' and dataset != 't10k': raise NameError('dataset must be train or t10k') label_file = os.path.join(path, dataset + '-labels-idx1-ubyte') with open(label_file, 'rb') as file: _, num = struct.unpack(">II", file.read(8)) labels = np.fromfile(file, dtype=np.int8) # int8 new_labels = np.zeros((num, 10)) new_labels[np.arange(num), labels] = 1 img_file = os.path.join(path, dataset + '-images-idx3-ubyte') with open(img_file, 'rb') as file: _, num, rows, cols = struct.unpack(">IIII", file.read(16)) imgs = np.fromfile(file, dtype=np.uint8).reshape(num, rows, cols) # uint8 imgs = imgs.astype(np.float32) / 255.0 if flatten: imgs = imgs.reshape([num, -1]) return imgs, new_labels
Example #2
Source File: io.py From me-ica with GNU Lesser General Public License v2.1 | 7 votes |
def _fread3_many(fobj, n): """Read 3-byte ints from an open binary file object. Parameters ---------- fobj : file File descriptor Returns ------- out : 1D array An array of 3 byte int """ b1, b2, b3 = np.fromfile(fobj, ">u1", 3 * n).reshape(-1, 3).astype(np.int).T return (b1 << 16) + (b2 << 8) + b3
Example #3
Source File: writer.py From CapsLayer with Apache License 2.0 | 6 votes |
def load_mnist(path, split): split = split.lower() image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]] with open(image_file) as fd: images = np.fromfile(file=fd, dtype=np.uint8) images = images[16:].reshape(-1, 784).astype(np.float32) if split == "train": images = images[:55000] elif split == "eval": images = images[55000:] with open(label_file) as fd: labels = np.fromfile(file=fd, dtype=np.uint8) labels = labels[8:].astype(np.int32) if split == "train": labels = labels[:55000] elif split == "eval": labels = labels[55000:] return(zip(images, labels))
Example #4
Source File: plyfile.py From Pointnet_Pointnet2_pytorch with MIT License | 6 votes |
def _read(self, stream, text, byte_order): ''' Read the actual data from a PLY file. ''' if text: self._read_txt(stream) else: if self._have_list: # There are list properties, so a simple load is # impossible. self._read_bin(stream, byte_order) else: # There are no list properties, so loading the data is # much more straightforward. self._data = _np.fromfile(stream, self.dtype(byte_order), self.count) if len(self._data) < self.count: k = len(self._data) del self._data raise PlyParseError("early end-of-file", self, k) self._check_sanity()
Example #5
Source File: ingest_stl10.py From ArtGAN with BSD 3-Clause "New" or "Revised" License | 6 votes |
def collectdata(self,): print 'Start Collect Data...' train_x_path = os.path.join(self.input_dir, 'unlabeled_X.bin') train_xf = open(train_x_path, 'rb') train_x = np.fromfile(train_xf, dtype=np.uint8) train_x = np.reshape(train_x, (-1, 3, 96, 96)) train_x = np.transpose(train_x, (0, 3, 2, 1)) idx = 0 for i in xrange(train_x.shape[0]): if not self.skipimg: transform_and_save(img_arr=train_x[i], output_filename=os.path.join(self.unlabeldir, str(idx) + '.jpg')) self.trainpairlist[os.path.join('images', 'unlabeled', str(idx) + '.jpg')] = 'labels/11.txt' idx += 1 print 'Finished Collect Data...'
Example #6
Source File: load_flow.py From DenseMatchingBenchmark with MIT License | 6 votes |
def load_flo(file_path): """ Read .flo file in MiddleBury format Code adapted from: http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy WARNING: this will work on little-endian architectures (eg Intel x86) only! Args: file_path string: file path(absolute) Returns: flow (numpy.array): data of image in (Height, Width, 2) layout """ with open(file_path, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) assert(magic == 202021.25) w = int(np.fromfile(f, np.int32, count=1)) h = int(np.fromfile(f, np.int32, count=1)) # print('Reading %d x %d flo file\n' % (w, h)) flow = np.fromfile(f, np.float32, count=2 * w * h) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) flow = np.resize(flow, (h, w, 2)) return flow
Example #7
Source File: read.py From typhon with MIT License | 6 votes |
def ComplexMatrix(elem): # turn dims around: in ARTS, [10 x 1 x 1] means 10 pages, 1 row, 1 col dimnames = [dim for dim in dimension_names if dim in elem.attrib.keys()][::-1] dims = [int(elem.attrib[dim]) for dim in dimnames] if np.prod(dims) == 0: flatarr = np.ndarray(dims, dtype=np.complex128) elif elem.binaryfp is not None: flatarr = np.fromfile(elem.binaryfp, dtype=np.complex128, count=np.prod(np.array(dims)).item()) flatarr = flatarr.reshape(dims) else: flatarr = np.fromstring(elem.text, sep=' ', dtype=np.float64) flatarr.dtype = np.complex128 flatarr = flatarr.reshape(dims) return flatarr
Example #8
Source File: plyfile.py From pointnet-registration-framework with MIT License | 6 votes |
def _read(self, stream, text, byte_order): ''' Read the actual data from a PLY file. ''' if text: self._read_txt(stream) else: if self._have_list: # There are list properties, so a simple load is # impossible. self._read_bin(stream, byte_order) else: # There are no list properties, so loading the data is # much more straightforward. self._data = _np.fromfile(stream, self.dtype(byte_order), self.count) if len(self._data) < self.count: k = len(self._data) del self._data raise PlyParseError("early end-of-file", self, k) self._check_sanity()
Example #9
Source File: topography.py From typhon with MIT License | 6 votes |
def get_tile(name): """ Get tile with the given name. Check the cache for the tile with the given name. If not found, the tile is download. Args: name(str): The name of the tile. """ dem_file = os.path.join(_get_data_path(), (name + ".dem").upper()) if not (os.path.exists(dem_file)): SRTM30.download_tile(name) y = np.fromfile(dem_file, dtype = np.dtype('>i2')).reshape(SRTM30._tile_height, SRTM30._tile_width) return y
Example #10
Source File: read.py From typhon with MIT License | 6 votes |
def Vector(elem): nelem = int(elem.attrib['nelem']) if nelem == 0: arr = np.ndarray((0,)) else: # sep=' ' seems to work even when separated by newlines, see # http://stackoverflow.com/q/31882167/974555 if elem.binaryfp is not None: arr = np.fromfile(elem.binaryfp, dtype='<d', count=nelem) else: arr = np.fromstring(elem.text, sep=' ') if arr.size != nelem: raise RuntimeError( 'Expected {:s} elements in Vector, found {:d}' ' elements!'.format(elem.attrib['nelem'], arr.size)) return arr
Example #11
Source File: catalogues.py From typhon with MIT License | 6 votes |
def from_xml(cls, xmlelement): """Loads a Sparse object from an existing file.""" binaryfp = xmlelement.binaryfp nelem = int(xmlelement[0].attrib['nelem']) nrows = int(xmlelement.attrib['nrows']) ncols = int(xmlelement.attrib['ncols']) if binaryfp is None: rowindex = np.fromstring(xmlelement[0].text, sep=' ').astype(int) colindex = np.fromstring(xmlelement[1].text, sep=' ').astype(int) sparsedata = np.fromstring(xmlelement[2].text, sep=' ') else: rowindex = np.fromfile(binaryfp, dtype='<i4', count=nelem) colindex = np.fromfile(binaryfp, dtype='<i4', count=nelem) sparsedata = np.fromfile(binaryfp, dtype='<d', count=nelem) return cls((sparsedata, (rowindex, colindex)), [nrows, ncols])
Example #12
Source File: certification_protocol.py From ibllib with MIT License | 6 votes |
def load_rf_mapping_stimulus(session_path, stim_metadata): """ extract frames of rf mapping stimulus :param session_path: absolute path of a session, i.e. /mnt/data/Subjects/ZM_1887/2019-07-10/001 :type session_path: str :param stim_metadata: dictionary of stimulus/task metadata :type stim_metadata: dict :return: stimulus frames :rtype: np.ndarray of shape (y_pix, x_pix, n_frames) """ idx_rfm = get_stim_num_from_name(stim_metadata['VISUAL_STIMULI'], 'receptive_field_mapping') if idx_rfm is not None: stim_filename = stim_metadata['VISUAL_STIM_%i' % idx_rfm].get( 'stim_data_file_name', '*RFMapStim.raw*') stim_file = glob.glob(os.path.join(session_path, 'raw_behavior_data', stim_filename))[0] frame_array = np.fromfile(stim_file, dtype='uint8') y_pix, x_pix, _ = stim_metadata['VISUAL_STIM_%i' % idx_rfm]['stim_file_shape'] frames = np.transpose(np.reshape(frame_array, [y_pix, x_pix, -1], order='F'), [2, 1, 0]) else: frames = np.array([]) return frames
Example #13
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_payload_getitem_setitem(self, item): with open(SAMPLE_FILE, 'rb') as fh: fh.seek(0xa88) header = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) payload = mark4.Mark4Payload.fromfile(fh, header) sel_data = payload.data[item] assert np.all(payload[item] == sel_data) payload2 = mark4.Mark4Payload(payload.words.copy(), header) assert payload2 == payload payload2[item] = -sel_data check = payload.data check[item] = -sel_data assert np.all(payload2[item] == -sel_data) assert np.all(payload2.data == check) assert payload2 != payload payload2[item] = sel_data assert np.all(payload2[item] == sel_data) assert payload2 == payload
Example #14
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_binary_file_reader(self): with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh: locations = fh.locate_frames() assert locations == [0xa88, 0xa88+64*2500] fh.seek(0xa88) header = mark4.Mark4Header.fromfile(fh, decade=2010, ntrack=64) fh.seek(0xa88) header2 = fh.read_header() current_pos = fh.tell() assert header2 == header frame_rate = fh.get_frame_rate() assert abs(frame_rate - 32 * u.MHz / header.samples_per_frame) < 1 * u.nHz assert fh.tell() == current_pos repr_fh = repr(fh) assert repr_fh.startswith('Mark4FileReader') assert 'ntrack=64, decade=2010, ref_time=None' in repr_fh
Example #15
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_header_times(self): with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh: fh.seek(0xa88) header0 = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) start_time = header0.time # Use frame size, since header adds to payload. samples_per_frame = header0.frame_nbytes * 8 // 2 // 8 frame_rate = 32. * u.MHz / samples_per_frame frame_duration = 1. / frame_rate fh.seek(0xa88) for frame_nr in range(100): try: frame = fh.read_frame() except EOFError: break header_time = frame.header.time expected = start_time + frame_nr * frame_duration assert abs(header_time - expected) < 1. * u.ns
Example #16
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_32TRACK, 'rb') as fh: fh.seek(9656) header = mark4.Mark4Header.fromfile(fh, ntrack=32, decade=2010) # Try initialising with properties instead of keywords. # Here, we let # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * nsb defines lsb_output and converter_id. header1 = mark4.Mark4Header.fromvalues( ntrack=32, samples_per_frame=80000, bps=2, nsb=2, time=header.time, system_id=108) assert header1 == header
Example #17
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_32TRACK_FANOUT2, 'rb') as fh: fh.seek(17436) header = mark4.Mark4Header.fromfile(fh, ntrack=32, decade=2010) # Try initialising with properties instead of keywords. # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * header.converter since lsb_output and converter_id are somewhat # non-standard header1 = mark4.Mark4Header.fromvalues( ntrack=32, samples_per_frame=40000, bps=2, time=header.time, system_id=108, converters=header.converters) assert header1 == header
Example #18
Source File: test_mark4.py From baseband with GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_64TRACK_FT, 'rb') as fh: fh.seek(124288) header = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) # Try initialising with properties instead of keywords. # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * explicitly set lsb_output and converter_id as they are so odd. header1 = mark4.Mark4Header.fromvalues( ntrack=64, samples_per_frame=40000, time=header.time, system_id=114, lsb_output=header['lsb_output'], converter_id=header['converter_id'], magnitude_bit=header['magnitude_bit']) assert header1 == header
Example #19
Source File: stack_line_readers.py From yatsm with MIT License | 6 votes |
def _read_row(self, row): data = np.empty((self.size[1], self.n_image, self.size[0]), self.datatype) for i, fid in enumerate(self.files): # Find where we need to seek to offset = np.dtype(self.datatype).itemsize * \ (row * self.size[0]) * self.size[1] # Seek relative to current position fid.seek(offset - fid.tell(), 1) # Read data[:, i, :] = np.fromfile(fid, dtype=self.datatype, count=self.size[0] * self.size[1], ).reshape(self.size).T return data
Example #20
Source File: writer.py From CapsLayer with Apache License 2.0 | 6 votes |
def load_fashion_mnist(path, split): split = split.lower() image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]] with open(image_file) as fd: images = np.fromfile(file=fd, dtype=np.uint8) images = images[16:].reshape(-1, 784).astype(np.float32) if split == "train": images = images[:55000] elif split == "eval": images = images[55000:] with open(label_file) as fd: labels = np.fromfile(file=fd, dtype=np.uint8) labels = labels[8:].astype(np.int32) if split == "train": labels = labels[:55000] elif split == "eval": labels = labels[55000:] return(zip(images, labels))
Example #21
Source File: test_longdouble.py From recruit with Apache License 2.0 | 5 votes |
def test_tofile_roundtrip(self): with temppath() as path: self.tgt.tofile(path, sep=" ") res = np.fromfile(path, dtype=np.longdouble, sep=" ") assert_equal(res, self.tgt) # Conversions long double -> string
Example #22
Source File: load.py From Theano-Tutorials with MIT License | 5 votes |
def mnist(ntrain=60000,ntest=10000,onehot=True): data_dir = os.path.join(datasets_dir,'mnist/') fd = open(os.path.join(data_dir,'train-images-idx3-ubyte')) loaded = np.fromfile(file=fd,dtype=np.uint8) trX = loaded[16:].reshape((60000,28*28)).astype(float) fd = open(os.path.join(data_dir,'train-labels-idx1-ubyte')) loaded = np.fromfile(file=fd,dtype=np.uint8) trY = loaded[8:].reshape((60000)) fd = open(os.path.join(data_dir,'t10k-images-idx3-ubyte')) loaded = np.fromfile(file=fd,dtype=np.uint8) teX = loaded[16:].reshape((10000,28*28)).astype(float) fd = open(os.path.join(data_dir,'t10k-labels-idx1-ubyte')) loaded = np.fromfile(file=fd,dtype=np.uint8) teY = loaded[8:].reshape((10000)) trX = trX/255. teX = teX/255. trX = trX[:ntrain] trY = trY[:ntrain] teX = teX[:ntest] teY = teY[:ntest] if onehot: trY = one_hot(trY, 10) teY = one_hot(teY, 10) else: trY = np.asarray(trY) teY = np.asarray(teY) return trX,teX,trY,teY
Example #23
Source File: test_longdouble.py From recruit with Apache License 2.0 | 5 votes |
def test_fromfile_bogus(self): with temppath() as path: with open(path, 'wt') as f: f.write("1. 2. 3. flop 4.\n") res = np.fromfile(path, dtype=float, sep=" ") assert_equal(res, np.array([1., 2., 3.]))
Example #24
Source File: depth_evaluation_utils.py From SfmLearner-Pytorch with MIT License | 5 votes |
def load_velodyne_points(file_name): # adapted from https://github.com/hunse/kitti points = np.fromfile(file_name, dtype=np.float32).reshape(-1, 4) points[:,3] = 1 return points
Example #25
Source File: stl10.py From Qualia2.0 with MIT License | 5 votes |
def _load_data(self, filename): with open(filename, 'rb') as file: if gpu: import numpy data = np.asarray(numpy.fromfile(file, numpy.uint8)) else: data = np.fromfile(file, np.uint8) return data.reshape(-1, 3, 96, 96).transpose(0,1,3,2)
Example #26
Source File: test_longdouble.py From recruit with Apache License 2.0 | 5 votes |
def test_fromfile(self): with temppath() as path: with open(path, 'wt') as f: f.write(self.out) res = np.fromfile(path, dtype=np.longdouble, sep="\n") assert_equal(res, self.tgt)
Example #27
Source File: sar_data.py From SAR-change-detection with MIT License | 5 votes |
def read_sar_file(path, dtype, header): "Load a single SAR file" # Load data and reshape array = np.fromfile(path, dtype=dtype) if header: array = array[1024:] # Swap byte order return array.newbyteorder('S')
Example #28
Source File: plyfile.py From Pointnet_Pointnet2_pytorch with MIT License | 5 votes |
def _read_bin(self, stream, byte_order): (len_t, val_t) = self.list_dtype(byte_order) try: n = _np.fromfile(stream, len_t, 1)[0] except IndexError: raise StopIteration data = _np.fromfile(stream, val_t, n) if len(data) < n: raise StopIteration return data
Example #29
Source File: plyfile.py From Pointnet_Pointnet2_pytorch with MIT License | 5 votes |
def _read_bin(self, stream, byte_order): ''' Read data from a binary stream. Raise StopIteration if the property could not be read. ''' try: return _np.fromfile(stream, self.dtype(byte_order), 1)[0] except IndexError: raise StopIteration
Example #30
Source File: test_regression.py From recruit with Apache License 2.0 | 5 votes |
def test_fromfile_tofile_seeks(self): # On Python 3, tofile/fromfile used to get (#1610) the Python # file handle out of sync f0 = tempfile.NamedTemporaryFile() f = f0.file f.write(np.arange(255, dtype='u1').tobytes()) f.seek(20) ret = np.fromfile(f, count=4, dtype='u1') assert_equal(ret, np.array([20, 21, 22, 23], dtype='u1')) assert_equal(f.tell(), 24) f.seek(40) np.array([1, 2, 3], dtype='u1').tofile(f) assert_equal(f.tell(), 43) f.seek(40) data = f.read(3) assert_equal(data, b"\x01\x02\x03") f.seek(80) f.read(4) data = np.fromfile(f, dtype='u1', count=4) assert_equal(data, np.array([84, 85, 86, 87], dtype='u1')) f.close()