Python sklearn.datasets.fetch_lfw_people() Examples
The following are 11
code examples of sklearn.datasets.fetch_lfw_people().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: faces.py From ConvNetPy with MIT License | 6 votes |
def load_data(): global training_data, testing_data lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4) xs = lfw_people.data ys = lfw_people.target inputs = [] labels = list(ys) for face in xs: V = Vol(50, 37, 1, 0.0) V.w = list(face) inputs.append(augment(V, 30)) x_tr, x_te, y_tr, y_te = train_test_split(inputs, labels, test_size=0.25) training_data = zip(x_tr, y_tr) testing_data = zip(x_te, y_te) print 'Dataset made...'
Example #2
Source File: test_lfw.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_load_empty_lfw_people(): assert_raises(IOError, fetch_lfw_people, data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False)
Example #3
Source File: test_lfw.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez']) # test return_X_y option fetch_func = partial(fetch_lfw_people, data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) check_return_X_y(lfw_people, fetch_func)
Example #4
Source File: test_lfw.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_load_fake_lfw_people_too_restrictive(): assert_raises(ValueError, fetch_lfw_people, data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False)
Example #5
Source File: complete_faces.py From fancyimpute with Apache License 2.0 | 5 votes |
def get_lfw(max_size=None): dataset = fetch_lfw_people(color=True) # keep only one image per person return image_per_label( dataset.images, dataset.target, dataset.target_names, max_size=max_size)
Example #6
Source File: visualization_ex.py From Lyssandra with BSD 3-Clause "New" or "Revised" License | 5 votes |
def dictionary_learn_ex(): patch_shape = (18, 18) n_atoms = 225 n_plot_atoms = 225 n_nonzero_coefs = 2 n_jobs = 8 lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4,color=False) n_imgs, h, w = lfw_people.images.shape imgs = [] for i in range(n_imgs): img = lfw_people.images[i, :, :].reshape((h, w)) img /= 255. imgs.append(img) print 'Extracting reference patches...' X = extract_patches(imgs, patch_size=patch_shape[0],scale=False,n_patches=int(1e5),verbose=True,n_jobs=n_jobs) print "number of patches:", X.shape[1] se = sparse_encoder(algorithm='bomp',params={'n_nonzero_coefs': n_nonzero_coefs}, n_jobs=n_jobs) odc = online_dictionary_coder(n_atoms=n_atoms, sparse_coder=se, n_epochs=2, batch_size=1000, non_neg=False, verbose=True, n_jobs=n_jobs) odc.fit(X) D = odc.D plt.figure(figsize=(4.2, 4)) for i in range(n_plot_atoms): plt.subplot(15, 15, i + 1) plt.imshow(D[:, i].reshape(patch_shape), cmap=plt.cm.gray) plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.0, hspace=0.0) plt.xticks(()) plt.yticks(()) plt.show()
Example #7
Source File: visualize.py From personal-photos-model with Apache License 2.0 | 5 votes |
def visualize(): """ Writes out various visualizations of our testing data." """ print "Preparing visualizations..." tile_faces(fetch_lfw_people()["images"], constants.LOG_DIR + "/all_faces_tiled.png")
Example #8
Source File: test_lfw.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_load_empty_lfw_people(): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False)
Example #9
Source File: test_lfw.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert_equal(lfw_people.images.shape, (10, 62, 47)) assert_equal(lfw_people.data.shape, (10, 2914)) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ['Abdelatif Smith', 'Abhati Kepler', 'Onur Lopez'] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False) assert_equal(lfw_people.images.shape, (17, 250, 250, 3)) # the ids and class names are the same as previously assert_array_equal(lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2]) assert_array_equal(lfw_people.target_names, ['Abdelatif Smith', 'Abhati Kepler', 'Camara Alvaro', 'Chen Dupont', 'John Lee', 'Lin Bauman', 'Onur Lopez'])
Example #10
Source File: test_lfw.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_load_fake_lfw_people_too_restrictive(): fetch_lfw_people(data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False)
Example #11
Source File: visualization_ex.py From Lyssandra with BSD 3-Clause "New" or "Revised" License | 4 votes |
def whitened_rgb_atoms(): # a small dataset of images imgs = get_images(colored=True) # alternatively we could use the lfw dataset """ lfw_people = fetch_lfw_people(min_faces_per_person=70, resize=0.4,color=True) faces = lfw_people.data n_imgs,h,w,n_channels = lfw_people.images.shape imgs = [] for i in range(n_imgs): img = lfw_people.images[i,:,:,:].reshape((h,w,n_channels)) imgs.append(img) """ patch_shape = (8, 8) n_atoms = 100 n_plot_atoms = 100 n_nonzero_coefs = 1 print 'Extracting reference patches...' X = extract_patches(imgs, patch_size=patch_shape[0], scale=False, n_patches=int(5e5), mem="low") print "number of patches:", X.shape[1] wn = preproc("whitening") from lyssa.feature_extract.preproc import local_contrast_normalization # apply lcn and then whiten the patches X = wn(local_contrast_normalization(X)) # learn the dictionary using Batch Orthognal Matching Pursuit and KSVD se = sparse_encoder(algorithm='bomp', params={'n_nonzero_coefs': n_nonzero_coefs}, n_jobs=8) kc = ksvd_coder(n_atoms=n_atoms, sparse_coder=se, init_dict="data", max_iter=3, verbose=True, approx=False, n_jobs=8) kc.fit(X) D = kc.D for i in range(n_atoms): D[:, i] = (D[:, i] - D[:, i].min()) / float((D[:, i].max() - D[:, i].min())) # plot the learned dictionary plt.figure(figsize=(4.2, 4)) for i in range(n_plot_atoms): plt.subplot(10, 10, i + 1) plt.imshow(D[:, i].reshape((patch_shape[0], patch_shape[1], 3))) plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, wspace=0.0, hspace=0.0) plt.xticks(()) plt.yticks(()) plt.show()