Python collections.defaultdict() Examples
The following are 30
code examples of collections.defaultdict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
collections
, or try the search function
.
Example #1
Source File: news_corpus_generator.py From news-corpus-builder with MIT License | 6 votes |
def __init__(self,corpus_dir,datastore_type='file',db_name='corpus.db'): ''' Read links and associated categories for specified articles in text file seperated by a space Args: corpus_dir (str): The directory to save the generated corpus datastore_type (Optional[str]): Format to save generated corpus. Specify either 'file' or 'sqlite'. db_name (Optional[str]): Name of database if 'sqlite' is selected. ''' self.g = Goose({'browser_user_agent': 'Mozilla','parser_class':'soup'}) #self.g = Goose({'browser_user_agent': 'Mozilla'}) self.corpus_dir = corpus_dir self.datastore_type = datastore_type self.db_name = db_name self.stats = defaultdict(int) self._create_corpus_dir(self.corpus_dir) self.db = None if self.datastore_type == 'sqlite': self.db = self.corpus_dir + '/' + self.db_name self._set_up_db(self.db)
Example #2
Source File: DDPAE.py From DDPAE-video-prediction with MIT License | 6 votes |
def sample_latent(self, input, input_latent_mu, input_latent_sigma, pred_latent_mu, pred_latent_sigma, initial_pose_mu, initial_pose_sigma, sample=True): ''' Return latent variables: dictionary containing pose and content. Then, crop objects from the images and encode into z. ''' latent = defaultdict(lambda: None) beta = self.get_transitions(input_latent_mu, input_latent_sigma, pred_latent_mu, pred_latent_sigma, sample) pose = self.accumulate_pose(beta) # Sample initial pose initial_pose = self.pyro_sample('initial_pose', dist.Normal, initial_pose_mu, initial_pose_sigma, sample) pose += initial_pose.view(-1, 1, self.n_components, self.pose_latent_size) pose = self.constrain_pose(pose) # Get input objects input_pose = pose[:, :self.n_frames_input, :, :] input_obj = self.get_objects(input, input_pose) # Encode the sampled objects z = self.object_encoder(input_obj) z = self.sample_content(z, sample) latent.update({'pose': pose, 'content': z}) return latent
Example #3
Source File: replay.py From iSDX with Apache License 2.0 | 6 votes |
def __init__(self, config, flows_dir, ports_dir, num_timesteps, debug=False): self.logger = logging.getLogger("LogHistory") if debug: self.logger.setLevel(logging.DEBUG) self.log_entry = namedtuple("LogEntry", "source destination type") self.ports = defaultdict(list) self.flows = defaultdict(list) self.data = defaultdict(lambda: defaultdict(lambda: defaultdict(int))) self.current_timestep = 0 self.total_timesteps = num_timesteps self.parse_config(config) self.parse_logs(num_timesteps, flows_dir, ports_dir) self.info() pretty(self.data)
Example #4
Source File: bleu_scorer.py From deep-summarization with MIT License | 6 votes |
def precook(s, n=4, out=False): """ Takes a string as input and returns an object that can be given to either cook_refs or cook_test. This is optional: cook_refs and cook_test can take string arguments as well. :param s: :param n: :param out: :return: """ words = s.split() counts = defaultdict(int) for k in xrange(1,n+1): for i in xrange(len(words)-k+1): ngram = tuple(words[i:i+k]) counts[ngram] += 1 return (len(words), counts)
Example #5
Source File: coco.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def __init__(self, annotation_file=None): """ Constructor of Microsoft COCO helper class for reading and visualizing annotations. :param annotation_file (str): location of annotation file :param image_folder (str): location to the folder that hosts images. :return: """ # load dataset self.dataset,self.anns,self.cats,self.imgs = dict(),dict(),dict(),dict() self.imgToAnns, self.catToImgs = defaultdict(list), defaultdict(list) if not annotation_file == None: print('loading annotations into memory...') tic = time.time() dataset = json.load(open(annotation_file, 'r')) assert type(dataset)==dict, 'annotation file format {} not supported'.format(type(dataset)) print('Done (t={:0.2f}s)'.format(time.time()- tic)) self.dataset = dataset self.createIndex()
Example #6
Source File: s3.py From aegea with Apache License 2.0 | 6 votes |
def lifecycle(args): if args.delete: return resources.s3.BucketLifecycle(args.bucket_name).delete() rule = defaultdict(list, Prefix=args.prefix, Status="Enabled") if args.transition_to_infrequent_access is not None: rule["Transitions"].append(dict(StorageClass="STANDARD_IA", Days=args.transition_to_infrequent_access)) if args.transition_to_glacier is not None: rule["Transitions"].append(dict(StorageClass="GLACIER", Days=args.transition_to_glacier)) if args.expire is not None: rule["Expiration"] = dict(Days=args.expire) if args.abort_incomplete_multipart_upload is not None: rule["AbortIncompleteMultipartUpload"] = dict(DaysAfterInitiation=args.abort_incomplete_multipart_upload) if len(rule) > 2: clients.s3.put_bucket_lifecycle_configuration(Bucket=args.bucket_name, LifecycleConfiguration=dict(Rules=[rule])) try: for rule in resources.s3.BucketLifecycle(args.bucket_name).rules: print(json.dumps(rule)) except ClientError as e: expect_error_codes(e, "NoSuchLifecycleConfiguration") logger.error("No lifecycle configuration for bucket %s", args.bucket_name)
Example #7
Source File: __init__.py From EDeN with MIT License | 6 votes |
def compute_matching_neighborhoods_fraction(GA, GB, pairings): count = 0 matches = dict([(i, j) for i, j in enumerate(pairings)]) matching_edges = defaultdict(list) for i, j in GA.edges(): ii = matches[i] jj = matches[j] if (ii, jj) in GB.edges(): matching_edges[i].append(j) matching_edges[j].append(i) for u in GA.nodes(): if matching_edges.get(u, False): neighbors = nx.neighbors(GA, u) matches_neighborhood = True for v in neighbors: if v not in matching_edges[u]: matches_neighborhood = False break if matches_neighborhood: count += 1 return float(count) / len(GA.nodes())
Example #8
Source File: iterated_maximum_subarray.py From EDeN with MIT License | 6 votes |
def extract_sequence_and_score(graph=None): # make dict with positions as keys and lists of ids as values pos_to_ids = defaultdict(list) for u in graph.nodes(): if 'position' not in graph.node[u]: # no position attributes in graph, use the vertex id instead raise Exception('Missing "position" attribute in node:%s %s' % (u, graph.node[u])) else: pos = graph.node[u]['position'] # accumulate all node ids pos_to_ids[pos] += [u] # extract sequence of labels and importances seq = [None] * len(pos_to_ids) score = [0] * len(pos_to_ids) for pos in sorted(pos_to_ids): ids = pos_to_ids[pos] labels = [graph.node[u].get('label', 'N/A') for u in ids] # check that all labels for the same position are identical assert(sum([1 for label in labels if label == labels[0]]) == len(labels) ), 'ERROR: non identical labels referring to same position: %s %s' % (pos, labels) seq[pos] = labels[0] # average all importance score for the same position importances = [graph.node[u].get('importance', 0) for u in ids] score[pos] = np.mean(importances) return seq, score
Example #9
Source File: unique_constraint.py From goodtables-py with MIT License | 6 votes |
def _create_unique_fields_cache(cells): primary_key_column_numbers = [] cache = {} # Unique for _, cell in enumerate(cells, start=1): field = cell.get('field') column_number = cell.get('column-number') if field is not None: if field.descriptor.get('primaryKey'): primary_key_column_numbers.append(column_number) if field.constraints.get('unique'): cache[tuple([column_number])] = defaultdict(list) # Primary key if primary_key_column_numbers: cache[tuple(primary_key_column_numbers)] = defaultdict(list) return cache
Example #10
Source File: graph.py From EDeN with MIT License | 6 votes |
def _add_sparse_vector_labes(self, graph, vertex_v, node_feature_list): # add the vector with a feature resulting from hashing # the discrete labeled graph sparse encoding with the sparse vector # feature, the val is then multiplied. svec = graph.nodes[vertex_v].get(self.key_svec, None) if svec: vec_feature_list = defaultdict(lambda: defaultdict(float)) for radius_dist_key in node_feature_list: for feature in node_feature_list[radius_dist_key]: val = node_feature_list[radius_dist_key][feature] for i in svec: vec_val = svec[i] key = fast_hash_2(feature, i, self.bitmask) vec_feature_list[radius_dist_key][key] += val * vec_val node_feature_list = vec_feature_list return node_feature_list
Example #11
Source File: analyze_logs.py From mmdetection with Apache License 2.0 | 6 votes |
def load_json_logs(json_logs): # load and convert json_logs to log_dict, key is epoch, value is a sub dict # keys of sub dict is different metrics, e.g. memory, bbox_mAP # value of sub dict is a list of corresponding values of all iterations log_dicts = [dict() for _ in json_logs] for json_log, log_dict in zip(json_logs, log_dicts): with open(json_log, 'r') as log_file: for line in log_file: log = json.loads(line.strip()) # skip lines without `epoch` field if 'epoch' not in log: continue epoch = log.pop('epoch') if epoch not in log_dict: log_dict[epoch] = defaultdict(list) for k, v in log.items(): log_dict[epoch][k].append(v) return log_dicts
Example #12
Source File: datahub.py From svviz with MIT License | 6 votes |
def __init__(self): self.args = None self.alignDistance = 0 self.samples = collections.OrderedDict() self.genome = None self.sources = {} self.annotationSets = collections.OrderedDict() # for storing axes, annotations, etc, by allele self.alleleTracks = collections.defaultdict(collections.OrderedDict) self.trackCompositor = None self.dotplots = {} self.info = {} self.reset()
Example #13
Source File: test_loop.py From query-exporter with GNU General Public License v3.0 | 6 votes |
def metric_values(metric, by_labels=()): """Return values for the metric.""" if metric._type == "gauge": suffix = "" elif metric._type == "counter": suffix = "_total" values = defaultdict(list) for sample_suffix, labels, value in metric._samples(): if sample_suffix == suffix: if by_labels: label_values = tuple(labels[label] for label in by_labels) values[label_values] = value else: values[sample_suffix].append(value) return values if by_labels else values[suffix]
Example #14
Source File: master.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _save_sorted_results(self, run_stats, scores, image_count, filename): """Saves sorted (by score) results of the evaluation. Args: run_stats: dictionary with runtime statistics for submissions, can be generated by WorkPiecesBase.compute_work_statistics scores: dictionary mapping submission ids to scores image_count: dictionary with number of images processed by submission filename: output filename """ with open(filename, 'w') as f: writer = csv.writer(f) writer.writerow(['SubmissionID', 'ExternalTeamId', 'Score', 'MedianTime', 'ImageCount']) get_second = lambda x: x[1] for s_id, score in sorted(iteritems(scores), key=get_second, reverse=True): external_id = self.submissions.get_external_id(s_id) stat = run_stats.get( s_id, collections.defaultdict(lambda: float('NaN'))) writer.writerow([s_id, external_id, score, stat['median_eval_time'], image_count[s_id]])
Example #15
Source File: fingerprint.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, tau=0, name="", ds_name=""): self.name = name self.ds_name = ds_name self.tau = tau self.ids = set() self.ids_correct = set() self.ids_correct_fp = set() self.ids_agree = set() # Legal = there is a fingerprint match below threshold tau self.ids_legal = set() self.counts = defaultdict(lambda: 0) self.counts_legal = defaultdict(lambda: 0) self.counts_correct = defaultdict(lambda: 0) # Total number of examples self.i = 0
Example #16
Source File: 53_machine_translation.py From deep-learning-note with MIT License | 5 votes |
def bleu(pred_tokens, label_tokens, k): len_pred, len_label = len(pred_tokens), len(label_tokens) score = math.exp(min(0, 1 - len_label / len_pred)) for n in range(1, k + 1): num_matches, label_subs = 0, collections.defaultdict(int) for i in range(len_label - n + 1): label_subs[''.join(label_tokens[i: i + n])] += 1 for i in range(len_pred - n + 1): if label_subs[''.join(pred_tokens[i: i + n])] > 0: num_matches += 1 label_subs[''.join(pred_tokens[i: i + n])] -= 1 score *= math.pow(num_matches / (len_pred - n + 1), math.pow(0.5, n)) return score
Example #17
Source File: core.py From friendly-telegram with GNU Affero General Public License v3.0 | 5 votes |
def __init__(self, **kwargs): self.runner = None self.port = None self.running = asyncio.Event() self.ready = asyncio.Event() self.client_data = {} self._ratelimit_data = collections.defaultdict(dict) self.app = web.Application(middlewares=[ratelimit(lambda f: self._ratelimit_data[f])]) aiohttp_jinja2.setup(self.app, filters={"getdoc": inspect.getdoc, "ascii": ascii}, loader=jinja2.FileSystemLoader("web-resources")) self.app["static_root_url"] = "/static" super().__init__(**kwargs) self.app.router.add_static("/static/", "web-resources/static")
Example #18
Source File: foreign_key.py From goodtables-py with MIT License | 5 votes |
def _get_foreign_keys_values(schema, relations): # It's based on the following code: # https://github.com/frictionlessdata/tableschema-py/blob/master/tableschema/table.py#L218 # we dont need to load the complete reference table to test relations # we can lower payload AND optimize testing foreign keys # by preparing the right index based on the foreign key definition # foreign_keys are sets of tuples of all possible values in the foreign table # foreign keys = # [reference] [foreign_keys tuple] = { (foreign_keys_values, ) : one_keyedrow, ... } foreign_keys = defaultdict(dict) if schema: for fk in schema.foreign_keys: # load relation data relation = fk['reference']['resource'] # create a set of foreign keys # to optimize we prepare index of existing values # this index should use reference + foreign_keys as key # cause many foreign keys may use the same reference foreign_keys[relation][tuple(fk['reference']['fields'])] = {} for row in (relations[relation] or []): key = tuple([row[foreign_field] for foreign_field in fk['reference']['fields']]) # here we should chose to pick the first or nth row which match # previous implementation picked the first, so be it if key not in foreign_keys[relation][tuple(fk['reference']['fields'])]: foreign_keys[relation][tuple(fk['reference']['fields'])][key] = row return foreign_keys
Example #19
Source File: core.py From friendly-telegram with GNU Affero General Public License v3.0 | 5 votes |
def ratelimit(get_storage): @web.middleware async def ratelimit_middleware(request, handler): storage = get_storage(handler) if not hasattr(storage, "_ratelimit"): storage.setdefault("ratelimit", collections.defaultdict(lambda: 0)) storage.setdefault("ratelimit_last", collections.defaultdict(lambda: 1)) storage.setdefault("last_request", collections.defaultdict(lambda: 0)) if storage["last_request"][request.remote] > time.time() - 30: # Maybe ratelimit, was requested within 30 seconds last = storage["ratelimit_last"][request.remote] storage["ratelimit_last"][request.remote] = storage["ratelimit"][request.remote] storage["ratelimit"][request.remote] += last if storage["ratelimit"][request.remote] > 50: # If they have to wait more than 5 seconds (10 requests), kill em. return web.Response(status=429) await asyncio.sleep(storage["ratelimit"][request.remote] / 10) else: try: del storage["ratelimit"][request.remote] del storage["ratelimit_last"][request.remote] except KeyError: pass storage["last_request"][request.remote] = time.time() return await handler(request) return ratelimit_middleware
Example #20
Source File: coco.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def createIndex(self): # create index print('creating index...') anns, cats, imgs = {}, {}, {} imgToAnns,catToImgs = defaultdict(list),defaultdict(list) if 'annotations' in self.dataset: for ann in self.dataset['annotations']: imgToAnns[ann['image_id']].append(ann) anns[ann['id']] = ann if 'images' in self.dataset: for img in self.dataset['images']: imgs[img['id']] = img if 'categories' in self.dataset: for cat in self.dataset['categories']: cats[cat['id']] = cat if 'annotations' in self.dataset and 'categories' in self.dataset: for ann in self.dataset['annotations']: catToImgs[ann['category_id']].append(ann['image_id']) print('index created!') # create class members self.anns = anns self.imgToAnns = imgToAnns self.catToImgs = catToImgs self.imgs = imgs self.cats = cats
Example #21
Source File: DecisionTree.py From fuku-ml with MIT License | 5 votes |
def classify_with_missing_data(self, x, tree): if tree.is_leaf: # leaf return tree.each_class_counts else: v = x[tree.col] value_is_float = True try: v = float(v) except ValueError: value_is_float = False if v == 'None': true_branch = self.classify_with_missing_data(x, tree.true_branch) false_branch = self.classify_with_missing_data(x, tree.false_branch) true_branch_count = sum(true_branch.values()) false_branch_count = sum(false_branch.values()) true_branch_weight = float(true_branch_count) / (true_branch_count + false_branch_count) false_branch_weight = float(false_branch_count) / (true_branch_count + false_branch_count) each_class_counts = collections.defaultdict(int) for k, v in true_branch.items(): each_class_counts[k] += v * true_branch_weight for k, v in false_branch.items(): each_class_counts[k] += v * false_branch_weight return dict(each_class_counts) else: branch = None if value_is_float: if v >= float(tree.value): branch = tree.true_branch else: branch = tree.false_branch else: if v == tree.value: branch = tree.true_branch else: branch = tree.false_branch return self.classify_with_missing_data(x, branch)
Example #22
Source File: callback.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def args_wrapper(*args): """Generates callback arguments for model.fit() for a set of callback objects. Callback objects like PandasLogger(), LiveLearningCurve() get passed in. This assembles all their callback arguments. """ out = defaultdict(list) for callback in args: callback_args = callback.callback_args() for k, v in callback_args.items(): out[k].append(v) return dict(out)
Example #23
Source File: test_contrib_control_flow.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def test_scope(): class TestBlock1(gluon.HybridBlock): def __init__(self, prefix=None, params=None): super(TestBlock1, self).__init__(prefix=prefix, params=params) def hybrid_forward(self, F, data): (new_data, ) = F.contrib.cond( data > 0.5, then_func=lambda: data * 2, else_func=lambda: data * 3, name="my_cond", ) return new_data class TestBlock2(gluon.HybridBlock): def __init__(self, prefix=None, params=None): super(TestBlock2, self).__init__(prefix=prefix, params=params) def hybrid_forward(self, F, data): (new_data, ) = F.contrib.cond( data > 0.5, then_func=lambda: data * 2, else_func=lambda: data * 3, name="my_cond", ) return new_data AttrScope._subgraph_names = defaultdict(int) data = mx.nd.normal(loc=0, scale=1, shape=(1, )) block1 = TestBlock1() block1.initialize(ctx=default_context()) block1.hybridize() _ = block1(data) block2 = TestBlock2() block2.initialize(ctx=default_context()) block2.hybridize() _ = block2(data) assert len(AttrScope._subgraph_names) == 3 assert AttrScope._subgraph_names['my_cond_else'] == 2 assert AttrScope._subgraph_names['my_cond_pred'] == 2 assert AttrScope._subgraph_names['my_cond_then'] == 2
Example #24
Source File: api.py From tmhmm.py with MIT License | 5 votes |
def predict(sequence, model_or_filelike='TMHMM2.0.model', compute_posterior=True): if isinstance(model_or_filelike, tuple): model = model_or_filelike else: _, model = parse(model_or_filelike) _, path = viterbi(sequence, *model) if compute_posterior: forward_table, constants = forward(sequence, *model) backward_table = backward(sequence, constants, *model) posterior = forward_table * backward_table _, _, _, char_map, label_map, name_map = model observations = len(sequence) states = len(name_map) table = np.zeros(shape=(observations, 3)) for i in range(observations): group_probs = defaultdict(float) for j in range(states): group = label_map[j].lower() group_probs[group] += posterior[i, j] for k, group in enumerate(GROUP_NAMES): table[i, k] = group_probs[group] return path, table/table.sum(axis=1, keepdims=True) return path
Example #25
Source File: gen_vocab.py From DOTA_models with Apache License 2.0 | 5 votes |
def main(_): tf.logging.set_verbosity(tf.logging.INFO) vocab_freqs = defaultdict(int) doc_counts = defaultdict(int) # Fill vocabulary frequencies map and document counts map for doc in document_generators.documents( dataset='train', include_unlabeled=FLAGS.use_unlabeled, include_validation=FLAGS.include_validation): fill_vocab_from_doc(doc, vocab_freqs, doc_counts) # Filter out low-occurring terms vocab_freqs = dict((term, freq) for term, freq in vocab_freqs.iteritems() if doc_counts[term] > FLAGS.doc_count_threshold) # Sort by frequency ordered_vocab_freqs = data_utils.sort_vocab_by_frequency(vocab_freqs) # Limit vocab size ordered_vocab_freqs = ordered_vocab_freqs[:MAX_VOCAB_SIZE] # Add EOS token ordered_vocab_freqs.append((data_utils.EOS_TOKEN, 1)) # Write tf.gfile.MakeDirs(FLAGS.output_dir) data_utils.write_vocab_and_frequency(ordered_vocab_freqs, FLAGS.output_dir)
Example #26
Source File: utility.py From soccer-matlab with BSD 2-Clause "Simplified" License | 5 votes |
def variable_summaries(vars_, groups=None, scope='weights'): """Create histogram summaries for the provided variables. Summaries can be grouped via regexes matching variables names. Args: vars_: List of variables to summarize. groups: Mapping of name to regex for grouping summaries. scope: Name scope for this operation. Returns: Summary tensor. """ groups = groups or {r'all': r'.*'} grouped = collections.defaultdict(list) for var in vars_: for name, pattern in groups.items(): if re.match(pattern, var.name): name = re.sub(pattern, name, var.name) grouped[name].append(var) for name in groups: if name not in grouped: tf.logging.warn("No variables matching '{}' group.".format(name)) summaries = [] for name, vars_ in grouped.items(): vars_ = [tf.reshape(var, [-1]) for var in vars_] vars_ = tf.concat(vars_, 0) summaries.append(tf.summary.histogram(scope + '/' + name, vars_)) return tf.summary.merge(summaries)
Example #27
Source File: molecular_formula.py From QCElemental with BSD 3-Clause "New" or "Revised" License | 5 votes |
def order_molecular_formula(formula: str, order: str = "alphabetical") -> str: """ Reorders a molecular formula. Parameters ---------- formula: str A molecular formula order: str, optional Sorting order of the formula. Valid choices are "alphabetical" and "hill". Returns ------- str The molecular formula. """ matches = re.findall(r"[A-Z][^A-Z]*", formula) if not "".join(matches) == formula: raise ValueError(f"{formula} is not a valid molecular formula.") count = collections.defaultdict(int) for match in matches: match_n = re.match(r"(\D+)(\d*)", match) assert match_n if match_n.group(2) == "": n = 1 else: n = int(match_n.group(2)) count[match_n.group(1)] += n symbols = [k for k, v in count.items() for i in range(v)] return molecular_formula_from_symbols(symbols=symbols, order=order)
Example #28
Source File: diet.py From fine-lm with MIT License | 5 votes |
def create_slots(self, var): """Create the factorized Adam accumulators for diet variables.""" params = self.params shape = var.get_shape().as_list() if not hasattr(params, "slots"): params.slots = defaultdict(dict) name = var.op.name slots = params.slots[name] if params.factored_second_moment_accumulator and len(shape) == 2: slots["adam_vr"] = tf.get_variable( name + "_adam_vr", [shape[0], 1], trainable=False, initializer=tf.zeros_initializer()) slots["adam_vc"] = tf.get_variable( name + "_adam_vc", [1, shape[1]], trainable=False, initializer=tf.zeros_initializer()) else: slots["adam_v"] = tf.get_variable( name + "_adam_v", shape, trainable=False, initializer=tf.zeros_initializer()) if params.beta1 != 0.0: slots["adam_m"] = tf.get_variable( name + "_adam_m", shape, trainable=False, initializer=tf.zeros_initializer())
Example #29
Source File: periodic_table.py From QCElemental with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self): from . import data # Of length number of elements self.Z = data.nist_2011_atomic_weights["Z"] self.E = data.nist_2011_atomic_weights["E"] self.name = data.nist_2011_atomic_weights["name"] self._el2z = dict(zip(self.E, self.Z)) self._z2el = collections.OrderedDict(zip(self.Z, self.E)) self._element2el = dict(zip(self.name, self.E)) self._el2element = dict(zip(self.E, self.name)) # Of length number of isotopes self._EE = data.nist_2011_atomic_weights["_EE"] self.EA = data.nist_2011_atomic_weights["EA"] self.A = data.nist_2011_atomic_weights["A"] self.mass = data.nist_2011_atomic_weights["mass"] self._eliso2mass = dict(zip(self.EA, self.mass)) self._eliso2el = dict(zip(self.EA, self._EE)) self._eliso2a = dict(zip(self.EA, self.A)) self._el2a2mass = collections.defaultdict(dict) for EE, m, A in zip(self._EE, self.mass, self.A): self._el2a2mass[EE][A] = float(m)
Example #30
Source File: diet.py From fine-lm with MIT License | 5 votes |
def make_diet_var_getter(params): """Create a custom variable getter for diet variables according to params.""" def diet_var_initializer(shape, dtype, partition_info=None): """Initializer for a diet variable.""" del dtype del partition_info with common_layers.fn_device_dependency("diet_init") as out_deps: float_range = math.sqrt(3) ret = tf.random_uniform(shape, -float_range, float_range) if params.quantize: ret = _quantize(ret, params, randomize=False) out_deps.append(ret) return ret def diet_var_getter(getter, **kwargs): """Get diet variable and return it dequantized.""" if params.quantize: kwargs["dtype"] = tf.float16 kwargs["initializer"] = diet_var_initializer kwargs["trainable"] = False base_var = getter(**kwargs) dequantized = _dequantize(base_var, params) if not hasattr(params, "dequantized"): params.dequantized = defaultdict(list) params.dequantized[base_var.name].append(dequantized) return dequantized return diet_var_getter