Python sklearn.datasets.load_boston() Examples
The following are 30
code examples of sklearn.datasets.load_boston().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.datasets
, or try the search function
.
Example #1
Source File: test_learnersetting.py From xcessiv with Apache License 2.0 | 8 votes |
def setUp(self): self.X, self.y = load_boston(return_X_y=True) self.regressor_settings = [ 'sklearn_random_forest_regressor', 'sklearn_extra_trees_regressor', 'sklearn_bagging_regressor', 'sklearn_GP_regressor', 'sklearn_ridge_regressor', 'sklearn_lasso_regressor', 'sklearn_kernel_ridge_regressor', 'sklearn_knn_regressor', 'sklearn_svr_regressor', 'sklearn_decision_tree_regressor', 'sklearn_linear_regression', 'sklearn_adaboost_regressor', 'xgboost_regressor', ]
Example #2
Source File: test_boosted_trees_regression.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ if not _HAS_XGBOOST: return if not _HAS_SKLEARN: return scikit_data = load_boston() dtrain = xgboost.DMatrix( scikit_data.data, label=scikit_data.target, feature_names=scikit_data.feature_names, ) xgb_model = xgboost.train({}, dtrain, 1) # Save the data and the model self.scikit_data = scikit_data self.xgb_model = xgb_model self.feature_names = self.scikit_data.feature_names
Example #3
Source File: test_SVR.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_input_names(self): data = load_boston() df = pd.DataFrame({"input": data["data"].tolist()}) df["input"] = df["input"].apply(np.array) # Default values spec = libsvm.convert(self.libsvm_model) if _is_macos() and _macos_version() >= (10, 13): (df["prediction"], _, _) = svmutil.svm_predict( data["target"], data["data"].tolist(), self.libsvm_model ) metrics = evaluate_regressor(spec, df) self.assertAlmostEquals(metrics["max_error"], 0) # One extra parameters. This is legal/possible. num_inputs = len(data["data"][0]) spec = libsvm.convert(self.libsvm_model, input_length=num_inputs + 1) # Not enought input names. input_names = ["this", "is", "not", "enought", "names"] with self.assertRaises(ValueError): libsvm.convert(self.libsvm_model, input_names=input_names) with self.assertRaises(ValueError): libsvm.convert(self.libsvm_model, input_length=num_inputs - 1)
Example #4
Source File: test_SVR.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ if not _HAS_SKLEARN: return if not _HAS_LIBSVM: return scikit_data = load_boston() prob = svmutil.svm_problem(scikit_data["target"], scikit_data["data"].tolist()) param = svmutil.svm_parameter() param.svm_type = svmutil.EPSILON_SVR param.kernel_type = svmutil.LINEAR param.eps = 1 self.libsvm_model = svmutil.svm_train(prob, param)
Example #5
Source File: test_composite_pipelines.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_boston_OHE_plus_trees(self): data = load_boston() pl = Pipeline( [ ("OHE", OneHotEncoder(categorical_features=[8], sparse=False)), ("Trees", GradientBoostingRegressor(random_state=1)), ] ) pl.fit(data.data, data.target) # Convert the model spec = convert(pl, data.feature_names, "target") if _is_macos() and _macos_version() >= (10, 13): # Get predictions df = pd.DataFrame(data.data, columns=data.feature_names) df["prediction"] = pl.predict(data.data) # Evaluate it result = evaluate_regressor(spec, df, "target", verbose=False) assert result["max_error"] < 0.0001
Example #6
Source File: test_composite_pipelines.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_boston_OHE_plus_normalizer(self): data = load_boston() pl = Pipeline( [ ("OHE", OneHotEncoder(categorical_features=[8], sparse=False)), ("Scaler", StandardScaler()), ] ) pl.fit(data.data, data.target) # Convert the model spec = convert(pl, data.feature_names, "out") if _is_macos() and _macos_version() >= (10, 13): input_data = [dict(zip(data.feature_names, row)) for row in data.data] output_data = [{"out": row} for row in pl.transform(data.data)] result = evaluate_transformer(spec, input_data, output_data) assert result["num_errors"] == 0
Example #7
Source File: test_feature.py From heamy with MIT License | 6 votes |
def test_onehot(): data = load_boston() X, y = data['data'], data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15, random_state=333) train = pd.DataFrame(X_train) test = pd.DataFrame(X_test) t_train, t_test = onehot_features(train.copy(deep=True), test.copy(deep=True), [8, 1, 12], full=False, dummy_na=True) assert t_train.shape[1] == t_test.shape[1] assert t_train.shape[1] == 441 t_train, t_test = onehot_features(train.copy(deep=True), test.copy(deep=True), [8, 1, 12], full=True, dummy_na=False) assert t_train.shape[1] == t_test.shape[1] assert t_train.shape[1] == 500
Example #8
Source File: test_categorical_imputer.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston scikit_data = load_boston() scikit_model = Imputer(strategy="most_frequent", axis=0) scikit_data["data"][1, 8] = np.NaN input_data = scikit_data["data"][:, 8].reshape(-1, 1) scikit_model.fit(input_data, scikit_data["target"]) # Save the data and the model self.scikit_data = scikit_data self.scikit_model = scikit_model
Example #9
Source File: test_pipeline.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ if not (_HAS_SKLEARN): return scikit_data = load_boston() feature_names = scikit_data.feature_names scikit_model = LinearRegression() scikit_model.fit(scikit_data["data"], scikit_data["target"]) scikit_spec = converter.convert( scikit_model, feature_names, "target" ).get_spec() # Save the data and the model self.scikit_data = scikit_data self.scikit_model = scikit_model self.scikit_spec = scikit_spec
Example #10
Source File: test_random_forest_classifier.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston from sklearn.ensemble import RandomForestClassifier import numpy as np scikit_data = load_boston() scikit_model = RandomForestClassifier(random_state=1) t = scikit_data.target target = np.digitize(t, np.histogram(t)[1]) - 1 scikit_model.fit(scikit_data.data, target) # Save the data and the model self.scikit_data = scikit_data self.target = target self.scikit_model = scikit_model
Example #11
Source File: test_NuSVR.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ if not _HAS_SKLEARN: return if not _HAS_LIBSVM: return scikit_data = load_boston() prob = svmutil.svm_problem(scikit_data["target"], scikit_data["data"].tolist()) param = svmutil.svm_parameter() param.svm_type = svmutil.NU_SVR param.kernel_type = svmutil.LINEAR param.eps = 1 self.libsvm_model = svmutil.svm_train(prob, param)
Example #12
Source File: test_decision_tree_classifier_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): from sklearn.datasets import load_boston import numpy as np # Load data and train model scikit_data = load_boston() num_classes = 3 self.X = scikit_data.data.astype("f").astype( "d" ) ## scikit-learn downcasts data t = scikit_data.target target = np.digitize(t, np.histogram(t, bins=num_classes - 1)[1]) - 1 # Save the data and the model self.scikit_data = scikit_data self.target = target self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #13
Source File: test_few.py From few with GNU General Public License v3.0 | 6 votes |
def test_few_with_parents_weight(): """test_few.py: few performs without error with parent pressure for selection""" np.random.seed(1006987) boston = load_boston() d = np.column_stack((boston.data,boston.target)) np.random.shuffle(d) features = d[:,0:-1] target = d[:,-1] print("feature shape:",boston.data.shape) learner = FEW(generations=1, population_size=5, mutation_rate=1, crossover_rate=1, ml = LassoLarsCV(), min_depth = 1, max_depth = 3, sel = 'tournament', fit_choice = 'r2',tourn_size = 2, random_state=0, verbosity=0, disable_update_check=False, weight_parents=True) learner.fit(features[:300], target[:300]) few_score = learner.score(features[:300], target[:300]) test_score = learner.score(features[300:],target[300:]) print("few score:",few_score) print("few test score:",test_score)
Example #14
Source File: test_one_hot_encoder.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_boston_OHE(self): data = load_boston() for categorical_features in [[3], [8], [3, 8], [8, 3]]: model = OneHotEncoder( categorical_features=categorical_features, sparse=False ) model.fit(data.data, data.target) # Convert the model spec = sklearn.convert(model, data.feature_names, "out").get_spec() input_data = [dict(zip(data.feature_names, row)) for row in data.data] output_data = [{"out": row} for row in model.transform(data.data)] result = evaluate_transformer(spec, input_data, output_data) assert result["num_errors"] == 0 # This test still isn't working
Example #15
Source File: test_boosted_trees_classifier_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): from sklearn.datasets import load_boston # Load data and train model import numpy as np scikit_data = load_boston() num_classes = 3 self.X = scikit_data.data.astype("f").astype( "d" ) ## scikit-learn downcasts data t = scikit_data.target target = np.digitize(t, np.histogram(t, bins=num_classes - 1)[1]) - 1 # Save the data and the model self.scikit_data = scikit_data self.target = target self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #16
Source File: test_predictor.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_boston_dataset(max_bins): boston = load_boston() X_train, X_test, y_train, y_test = train_test_split( boston.data, boston.target, random_state=42) mapper = _BinMapper(max_bins=max_bins, random_state=42) X_train_binned = mapper.fit_transform(X_train) # Init gradients and hessians to that of least squares loss gradients = -y_train.astype(G_H_DTYPE) hessians = np.ones(1, dtype=G_H_DTYPE) min_samples_leaf = 8 max_leaf_nodes = 31 grower = TreeGrower(X_train_binned, gradients, hessians, min_samples_leaf=min_samples_leaf, max_leaf_nodes=max_leaf_nodes, max_bins=max_bins, actual_n_bins=mapper.actual_n_bins_) grower.grow() predictor = grower.make_predictor(bin_thresholds=mapper.bin_thresholds_) assert r2_score(y_train, predictor.predict(X_train)) > 0.85 assert r2_score(y_test, predictor.predict(X_test)) > 0.70
Example #17
Source File: test_random_forest_classifier_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeClassifier # Load data and train model import numpy as np scikit_data = load_boston() self.X = scikit_data.data.astype("f").astype( "d" ) ## scikit-learn downcasts data t = scikit_data.target num_classes = 3 target = np.digitize(t, np.histogram(t, bins=num_classes - 1)[1]) - 1 # Save the data and the model self.scikit_data = scikit_data self.target = target self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #18
Source File: test_base.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_score_sample_weight(): rng = np.random.RandomState(0) # test both ClassifierMixin and RegressorMixin estimators = [DecisionTreeClassifier(max_depth=2), DecisionTreeRegressor(max_depth=2)] sets = [datasets.load_iris(), datasets.load_boston()] for est, ds in zip(estimators, sets): est.fit(ds.data, ds.target) # generate random sample weights sample_weight = rng.randint(1, 10, size=len(ds.target)) # check that the score with and without sample weights are different assert_not_equal(est.score(ds.data, ds.target), est.score(ds.data, ds.target, sample_weight=sample_weight), msg="Unweighted and weighted scores " "are unexpectedly equal")
Example #19
Source File: test_coordinate_descent.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_warm_start_convergence_with_regularizer_decrement(): boston = load_boston() X, y = boston.data, boston.target # Train a model to converge on a lightly regularized problem final_alpha = 1e-5 low_reg_model = ElasticNet(alpha=final_alpha).fit(X, y) # Fitting a new model on a more regularized version of the same problem. # Fitting with high regularization is easier it should converge faster # in general. high_reg_model = ElasticNet(alpha=final_alpha * 10).fit(X, y) assert_greater(low_reg_model.n_iter_, high_reg_model.n_iter_) # Fit the solution to the original, less regularized version of the # problem but from the solution of the highly regularized variant of # the problem as a better starting point. This should also converge # faster than the original model that starts from zero. warm_low_reg_model = deepcopy(high_reg_model) warm_low_reg_model.set_params(warm_start=True, alpha=final_alpha) warm_low_reg_model.fit(X, y) assert_greater(low_reg_model.n_iter_, warm_low_reg_model.n_iter_)
Example #20
Source File: test_decision_tree_classifier.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeClassifier from sklearn.preprocessing import MultiLabelBinarizer import numpy as np scikit_data = load_boston() scikit_model = DecisionTreeClassifier(random_state=1) t = scikit_data.target target = np.digitize(t, np.histogram(t)[1]) - 1 scikit_model.fit(scikit_data.data, target) # Save the data and the model self.scikit_data = scikit_data self.target = target self.scikit_model = scikit_model
Example #21
Source File: test_boosted_trees_classifier.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston import numpy as np scikit_data = load_boston() t = scikit_data.target target = np.digitize(t, np.histogram(t)[1]) - 1 dtrain = xgboost.DMatrix( scikit_data.data, label=target, feature_names=scikit_data.feature_names ) self.xgb_model = xgboost.train({}, dtrain) self.target = target # Save the data and the model self.scikit_data = scikit_data self.n_classes = len(np.unique(self.target))
Example #22
Source File: test_boosted_trees_regression_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): if not _HAS_XGBOOST: return if not _HAS_SKLEARN: return # Load data and train model scikit_data = load_boston() self.X = scikit_data.data.astype("f").astype("d") self.dtrain = xgboost.DMatrix( scikit_data.data, label=scikit_data.target, feature_names=scikit_data.feature_names, ) self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #23
Source File: test_boosted_trees_classifier.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston import numpy as np scikit_data = load_boston() scikit_model = GradientBoostingClassifier(random_state=1) t = scikit_data.target target = np.digitize(t, np.histogram(t)[1]) - 1 scikit_model.fit(scikit_data.data, target) self.target = target # Save the data and the model self.scikit_data = scikit_data self.scikit_model = scikit_model
Example #24
Source File: test_standard_scalar.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_boston(self): from sklearn.datasets import load_boston scikit_data = load_boston() scikit_model = StandardScaler().fit(scikit_data.data) spec = converter.convert( scikit_model, scikit_data.feature_names, "out" ).get_spec() input_data = [ dict(zip(scikit_data.feature_names, row)) for row in scikit_data.data ] output_data = [{"out": row} for row in scikit_model.transform(scikit_data.data)] metrics = evaluate_transformer(spec, input_data, output_data) assert metrics["num_errors"] == 0
Example #25
Source File: test_keras_to_pmml_UnitTest.py From nyoka with Apache License 2.0 | 6 votes |
def test_keras_02(self): boston = load_boston() data = pd.DataFrame(boston.data) features = list(boston.feature_names) target = 'PRICE' data.columns = features data['PRICE'] = boston.target x_train, x_test, y_train, y_test = train_test_split(data[features], data[target], test_size=0.20, random_state=42) model = Sequential() model.add(Dense(13, input_dim=13, kernel_initializer='normal', activation='relu')) model.add(Dense(23)) model.add(Dense(1, kernel_initializer='normal')) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(x_train, y_train, epochs=1000, verbose=0) pmmlObj=KerasToPmml(model) pmmlObj.export(open('sequentialModel.pmml','w'),0) reconPmmlObj=ny.parse('sequentialModel.pmml',True) self.assertEqual(os.path.isfile("sequentialModel.pmml"),True) self.assertEqual(len(model.layers), len(reconPmmlObj.DeepNetwork[0].NetworkLayer)-1)
Example #26
Source File: test_few.py From few with GNU General Public License v3.0 | 6 votes |
def test_few_fit_shapes(): """test_few.py: fit and predict return correct shapes """ np.random.seed(202) # load example data boston = load_boston() d = pd.DataFrame(data=boston.data) print("feature shape:",boston.data.shape) learner = FEW(generations=1, population_size=5, mutation_rate=0.2, crossover_rate=0.8, ml = LassoLarsCV(), min_depth = 1, max_depth = 3, sel = 'epsilon_lexicase', tourn_size = 2, random_state=0, verbosity=0, disable_update_check=False, fit_choice = 'mse') score = learner.fit(boston.data[:300], boston.target[:300]) print("learner:",learner._best_estimator) yhat_test = learner.predict(boston.data[300:]) test_score = learner.score(boston.data[300:],boston.target[300:]) print("train score:",score,"test score:",test_score, "test r2:",r2_score(boston.target[300:],yhat_test)) assert yhat_test.shape == boston.target[300:].shape
Example #27
Source File: test_random_forest_regression_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston # Load data and train model scikit_data = load_boston() self.scikit_data = scikit_data self.X = scikit_data.data.astype("f").astype( "d" ) ## scikit-learn downcasts data self.target = scikit_data.target self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #28
Source File: test_decision_tree_classifier.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ from sklearn.datasets import load_boston from sklearn.tree import DecisionTreeClassifier scikit_data = load_boston() scikit_model = DecisionTreeClassifier(random_state=1) target = scikit_data["target"] > scikit_data["target"].mean() scikit_model.fit(scikit_data["data"], target) # Save the data and the model self.scikit_data = scikit_data self.scikit_model = scikit_model
Example #29
Source File: test_boosted_trees_regression_numeric.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUpClass(self): # Load data and train model scikit_data = load_boston() self.scikit_data = scikit_data self.X = scikit_data["data"] self.target = scikit_data["target"] self.feature_names = scikit_data.feature_names self.output_name = "target"
Example #30
Source File: test_pipeline.py From coremltools with BSD 3-Clause "New" or "Revised" License | 5 votes |
def setUpClass(self): """ Set up the unit test by loading the dataset and training a model. """ if not _HAS_SKLEARN: return scikit_data = load_boston() feature_names = scikit_data.feature_names scikit_model = Pipeline(steps=[("linear", LinearRegression())]) scikit_model.fit(scikit_data["data"], scikit_data["target"]) # Save the data and the model self.scikit_data = scikit_data self.scikit_model = scikit_model