Python theano.tensor.minimum() Examples
The following are 30
code examples of theano.tensor.minimum().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
theano.tensor
, or try the search function
.
Example #1
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #2
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #3
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #4
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #5
Source File: rprop.py From deepy with MIT License | 6 votes |
def rprop_core(params, gradients, rprop_increase=1.01, rprop_decrease=0.99, rprop_min_step=0, rprop_max_step=100, learning_rate=0.01): """ Rprop optimizer. See http://sci2s.ugr.es/keel/pdf/algorithm/articulo/2003-Neuro-Igel-IRprop+.pdf. """ for param, grad in zip(params, gradients): grad_tm1 = theano.shared(np.zeros_like(param.get_value()), name=param.name + '_grad') step_tm1 = theano.shared(np.zeros_like(param.get_value()) + learning_rate, name=param.name+ '_step') test = grad * grad_tm1 same = T.gt(test, 0) diff = T.lt(test, 0) step = T.minimum(rprop_max_step, T.maximum(rprop_min_step, step_tm1 * ( T.eq(test, 0) + same * rprop_increase + diff * rprop_decrease))) grad = grad - diff * grad yield param, param - T.sgn(grad) * step yield grad_tm1, grad yield step_tm1, step
Example #6
Source File: theano_backend.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #7
Source File: theano_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #8
Source File: theano_backend.py From keras-lambda with MIT License | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #9
Source File: theano_backend.py From Att-ChemdNER with Apache License 2.0 | 6 votes |
def ctc_update_log_p(skip_idxs, zeros, active, log_p_curr, log_p_prev): active_skip_idxs = skip_idxs[(skip_idxs < active).nonzero()] active_next = T.cast(T.minimum( T.maximum( active + 1, T.max(T.concatenate([active_skip_idxs, [-1]])) + 2 + 1 ), log_p_curr.shape[0]), 'int32') common_factor = T.max(log_p_prev[:active]) p_prev = T.exp(log_p_prev[:active] - common_factor) _p_prev = zeros[:active_next] # copy over _p_prev = T.set_subtensor(_p_prev[:active], p_prev) # previous transitions _p_prev = T.inc_subtensor(_p_prev[1:], _p_prev[:-1]) # skip transitions _p_prev = T.inc_subtensor(_p_prev[active_skip_idxs + 2], p_prev[active_skip_idxs]) updated_log_p_prev = T.log(_p_prev) + common_factor log_p_next = T.set_subtensor( zeros[:active_next], log_p_curr[:active_next] + updated_log_p_prev ) return active_next, log_p_next
Example #10
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #11
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #12
Source File: ctc.py From chamanti_ocr with Apache License 2.0 | 5 votes |
def _log_add(x, y): maxx = tt.maximum(x, y) minn = tt.minimum(x, y) return maxx + tt.log(1 + tt.exp(minn - maxx))
Example #13
Source File: ctc.py From rnn_ctc with Apache License 2.0 | 5 votes |
def logadd_advanced(x, y): maxx = tt.maximum(x, y) minn = tt.minimum(x, y) return maxx + tt.log(1 + tt.exp(minn - maxx))
Example #14
Source File: ctc.py From rnn_ctc with Apache License 2.0 | 5 votes |
def safe_exp(x): return tt.exp(tt.minimum(x, epsinv).astype(theano.config.floatX))
Example #15
Source File: example_support.py From humanRL_prior_games with MIT License | 5 votes |
def q_loss(self, y_true, y_pred): # assume clip_delta is 1.0 # along with sum accumulator. diff = y_true - y_pred _quad = T.minimum(abs(diff), 1.0) _lin = abs(diff) - _quad loss = 0.5 * _quad ** 2 + _lin loss = T.sum(loss) return loss
Example #16
Source File: theano_backend.py From KerasNeuralFingerprint with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): assert hasattr(T.nnet, 'relu'), ('It looks like like your version of ' 'Theano is out of date. ' 'Install the latest version with:\n' 'pip install git+git://github.com/Theano/Theano.git --upgrade --no-deps') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #17
Source File: theano_backend.py From deepQuest with BSD 3-Clause "New" or "Revised" License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #18
Source File: activations.py From deepy with MIT License | 5 votes |
def get_activation(act=None): def compose(a, b): c = lambda z: b(a(z)) c.__theanets_name__ = '%s(%s)' % (b.__theanets_name__, a.__theanets_name__) return c if '+' in act: return functools.reduce( compose, (get_activation(a) for a in act.split('+'))) options = { 'tanh': T.tanh, 'linear': lambda z: z, 'logistic': T.nnet.sigmoid, 'sigmoid': T.nnet.sigmoid, 'hard_sigmoid': T.nnet.hard_sigmoid, 'softplus': T.nnet.softplus, 'softmax': softmax, 'theano_softmax': T.nnet.softmax, # shorthands 'relu': lambda z: T.nnet.relu(z), 'leaky_relu': lambda z: T.nnet.relu(z, 0.01), 'trel': lambda z: z * (z > 0) * (z < 1), 'trec': lambda z: z * (z > 1), 'tlin': lambda z: z * (abs(z) > 1), # modifiers 'rect:max': lambda z: T.minimum(1, z), 'rect:min': lambda z: T.maximum(0, z), # normalization 'norm:dc': lambda z: (z.T - z.mean(axis=1)).T, 'norm:max': lambda z: (z.T / T.maximum(1e-10, abs(z).max(axis=1))).T, 'norm:std': lambda z: (z.T / T.maximum(1e-10, T.std(z, axis=1))).T, } for k, v in options.items(): v.__theanets_name__ = k try: return options[act] except KeyError: raise KeyError('unknown activation %r' % act)
Example #19
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #20
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #21
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #22
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #23
Source File: theano_backend.py From keras-lambda with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #24
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #25
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #26
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #27
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #28
Source File: theano_backend.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def relu(x, alpha=0., max_value=None): _assert_has_capability(T.nnet, 'relu') x = T.nnet.relu(x, alpha) if max_value is not None: x = T.minimum(x, max_value) return x
Example #29
Source File: theano_backend.py From Att-ChemdNER with Apache License 2.0 | 5 votes |
def minimum(x, y): return T.minimum(x, y)
Example #30
Source File: theano_backend.py From keras-lambda with MIT License | 5 votes |
def minimum(x, y): return T.minimum(x, y)