Python pickle.REDUCE Examples
The following are 15
code examples of pickle.REDUCE().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pickle
, or try the search function
.
Example #1
Source File: convert.py From POC-EXP with GNU General Public License v3.0 | 5 votes |
def base64unpickle(value): """ Decodes value from Base64 to plain format and deserializes (with pickle) its content >>> base64unpickle('gAJVBmZvb2JhcnEALg==') 'foobar' """ retVal = None def _(self): if len(self.stack) > 1: func = self.stack[-2] if func not in PICKLE_REDUCE_WHITELIST: raise Exception, "abusing reduce() is bad, Mkay!" self.load_reduce() def loads(str): file = StringIO.StringIO(str) unpickler = pickle.Unpickler(file) unpickler.dispatch[pickle.REDUCE] = _ return unpickler.load() try: retVal = loads(base64decode(value)) except TypeError: retVal = loads(base64decode(bytes(value))) return retVal
Example #2
Source File: core.py From mitogen with BSD 3-Clause "New" or "Revised" License | 5 votes |
def save_exc_inst(self, obj): if isinstance(obj, CallError): func, args = obj.__reduce__() self.save(func) self.save(args) self.write(py_pickle.REDUCE) else: py_pickle.Pickler.save_inst(self, obj)
Example #3
Source File: convert.py From EasY_HaCk with Apache License 2.0 | 5 votes |
def base64unpickle(value, unsafe=False): """ Decodes value from Base64 to plain format and deserializes (with pickle) its content >>> base64unpickle('gAJVBmZvb2JhcnEBLg==') 'foobar' """ retVal = None def _(self): if len(self.stack) > 1: func = self.stack[-2] if func not in PICKLE_REDUCE_WHITELIST: raise Exception("abusing reduce() is bad, Mkay!") self.load_reduce() def loads(str): f = StringIO.StringIO(str) if unsafe: unpickler = picklePy.Unpickler(f) unpickler.dispatch[picklePy.REDUCE] = _ else: unpickler = pickle.Unpickler(f) return unpickler.load() try: retVal = loads(base64decode(value)) except TypeError: retVal = loads(base64decode(bytes(value))) return retVal
Example #4
Source File: cloudpickle.py From FATE with Apache License 2.0 | 4 votes |
def save_dynamic_class(self, obj): """ Save a class that can't be stored as module global. This method is used to serialize classes that are defined inside functions, or that otherwise can't be serialized as attribute lookups from global modules. """ clsdict = dict(obj.__dict__) # copy dict proxy to a dict clsdict.pop('__weakref__', None) # On PyPy, __doc__ is a readonly attribute, so we need to include it in # the initial skeleton class. This is safe because we know that the # doc can't participate in a cycle with the original class. type_kwargs = {'__doc__': clsdict.pop('__doc__', None)} # If type overrides __dict__ as a property, include it in the type kwargs. # In Python 2, we can't set this attribute after construction. __dict__ = clsdict.pop('__dict__', None) if isinstance(__dict__, property): type_kwargs['__dict__'] = __dict__ save = self.save write = self.write # We write pickle instructions explicitly here to handle the # possibility that the type object participates in a cycle with its own # __dict__. We first write an empty "skeleton" version of the class and # memoize it before writing the class' __dict__ itself. We then write # instructions to "rehydrate" the skeleton class by restoring the # attributes from the __dict__. # # A type can appear in a cycle with its __dict__ if an instance of the # type appears in the type's __dict__ (which happens for the stdlib # Enum class), or if the type defines methods that close over the name # of the type, (which is utils for Python 2-style super() calls). # Push the rehydration function. save(_rehydrate_skeleton_class) # Mark the start of the args tuple for the rehydration function. write(pickle.MARK) # Create and memoize an skeleton class with obj's name and bases. tp = type(obj) self.save_reduce(tp, (obj.__name__, obj.__bases__, type_kwargs), obj=obj) # Now save the rest of obj's __dict__. Any references to obj # encountered while saving will point to the skeleton class. save(clsdict) # Write a tuple of (skeleton_class, clsdict). write(pickle.TUPLE) # Call _rehydrate_skeleton_class(skeleton_class, clsdict) write(pickle.REDUCE)
Example #5
Source File: cloudpickle.py From FATE with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function state = { 'globals': f_globals, 'defaults': defaults, 'dict': dct, 'module': func.__module__, 'closure_values': closure_values, } if hasattr(func, '__qualname__'): state['qualname'] = func.__qualname__ save(state) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #6
Source File: cloudpickle.py From FATE with Apache License 2.0 | 4 votes |
def save_dynamic_class(self, obj): """ Save a class that can't be stored as module global. This method is used to serialize classes that are defined inside functions, or that otherwise can't be serialized as attribute lookups from global modules. """ clsdict = dict(obj.__dict__) # copy dict proxy to a dict clsdict.pop('__weakref__', None) # On PyPy, __doc__ is a readonly attribute, so we need to include it in # the initial skeleton class. This is safe because we know that the # doc can't participate in a cycle with the original class. type_kwargs = {'__doc__': clsdict.pop('__doc__', None)} # If type overrides __dict__ as a property, include it in the type kwargs. # In Python 2, we can't set this attribute after construction. __dict__ = clsdict.pop('__dict__', None) if isinstance(__dict__, property): type_kwargs['__dict__'] = __dict__ save = self.save write = self.write # We write pickle instructions explicitly here to handle the # possibility that the type object participates in a cycle with its own # __dict__. We first write an empty "skeleton" version of the class and # memoize it before writing the class' __dict__ itself. We then write # instructions to "rehydrate" the skeleton class by restoring the # attributes from the __dict__. # # A type can appear in a cycle with its __dict__ if an instance of the # type appears in the type's __dict__ (which happens for the stdlib # Enum class), or if the type defines methods that close over the name # of the type, (which is utils for Python 2-style super() calls). # Push the rehydration function. save(_rehydrate_skeleton_class) # Mark the start of the args tuple for the rehydration function. write(pickle.MARK) # Create and memoize an skeleton class with obj's name and bases. tp = type(obj) self.save_reduce(tp, (obj.__name__, obj.__bases__, type_kwargs), obj=obj) # Now save the rest of obj's __dict__. Any references to obj # encountered while saving will point to the skeleton class. save(clsdict) # Write a tuple of (skeleton_class, clsdict). write(pickle.TUPLE) # Call _rehydrate_skeleton_class(skeleton_class, clsdict) write(pickle.REDUCE)
Example #7
Source File: cloudpickle.py From FATE with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function state = { 'globals': f_globals, 'defaults': defaults, 'dict': dct, 'module': func.__module__, 'closure_values': closure_values, } if hasattr(func, '__qualname__'): state['qualname'] = func.__qualname__ save(state) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #8
Source File: cloudpickle.py From LearningApacheSpark with MIT License | 4 votes |
def save_dynamic_class(self, obj): """ Save a class that can't be stored as module global. This method is used to serialize classes that are defined inside functions, or that otherwise can't be serialized as attribute lookups from global modules. """ clsdict = dict(obj.__dict__) # copy dict proxy to a dict clsdict.pop('__weakref__', None) # On PyPy, __doc__ is a readonly attribute, so we need to include it in # the initial skeleton class. This is safe because we know that the # doc can't participate in a cycle with the original class. type_kwargs = {'__doc__': clsdict.pop('__doc__', None)} # If type overrides __dict__ as a property, include it in the type kwargs. # In Python 2, we can't set this attribute after construction. __dict__ = clsdict.pop('__dict__', None) if isinstance(__dict__, property): type_kwargs['__dict__'] = __dict__ save = self.save write = self.write # We write pickle instructions explicitly here to handle the # possibility that the type object participates in a cycle with its own # __dict__. We first write an empty "skeleton" version of the class and # memoize it before writing the class' __dict__ itself. We then write # instructions to "rehydrate" the skeleton class by restoring the # attributes from the __dict__. # # A type can appear in a cycle with its __dict__ if an instance of the # type appears in the type's __dict__ (which happens for the stdlib # Enum class), or if the type defines methods that close over the name # of the type, (which is common for Python 2-style super() calls). # Push the rehydration function. save(_rehydrate_skeleton_class) # Mark the start of the args tuple for the rehydration function. write(pickle.MARK) # Create and memoize an skeleton class with obj's name and bases. tp = type(obj) self.save_reduce(tp, (obj.__name__, obj.__bases__, type_kwargs), obj=obj) # Now save the rest of obj's __dict__. Any references to obj # encountered while saving will point to the skeleton class. save(clsdict) # Write a tuple of (skeleton_class, clsdict). write(pickle.TUPLE) # Call _rehydrate_skeleton_class(skeleton_class, clsdict) write(pickle.REDUCE)
Example #9
Source File: cloudpickle.py From LearningApacheSpark with MIT License | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function state = { 'globals': f_globals, 'defaults': defaults, 'dict': dct, 'module': func.__module__, 'closure_values': closure_values, } if hasattr(func, '__qualname__'): state['qualname'] = func.__qualname__ save(state) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #10
Source File: cloudpickle.py From BentoML with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function state = { 'globals': f_globals, 'defaults': defaults, 'dict': dct, 'closure_values': closure_values, 'module': func.__module__, 'name': func.__name__, 'doc': func.__doc__, } if hasattr(func, '__annotations__') and sys.version_info >= (3, 7): state['annotations'] = func.__annotations__ if hasattr(func, '__qualname__'): state['qualname'] = func.__qualname__ if hasattr(func, '__kwdefaults__'): state['kwdefaults'] = func.__kwdefaults__ save(state) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #11
Source File: cloudpickle.py From spark-cluster-deployment with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func, forced_imports): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ save = self.save write = self.write # save the modules (if any) if forced_imports: write(pickle.MARK) save(_modules_to_main) #print 'forced imports are', forced_imports forced_names = map(lambda m: m.__name__, forced_imports) save((forced_names,)) #save((forced_imports,)) write(pickle.REDUCE) write(pickle.POP_MARK) code, f_globals, defaults, closure, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects # create a skeleton function object and memoize it save(_make_skel_func) save((code, len(closure), base_globals)) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function save(f_globals) save(defaults) save(closure) save(dct) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #12
Source File: cloudpickle.py From pywren with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data(func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function save(f_globals) save(defaults) save(dct) save(func.__module__) save(closure_values) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple
Example #13
Source File: cloudpickle.py From pywren with Apache License 2.0 | 4 votes |
def save_reduce(self, func, args, state=None, listitems=None, dictitems=None, obj=None): # Assert that args is a tuple or None if not isinstance(args, tuple): raise pickle.PicklingError("args from reduce() should be a tuple") # Assert that func is callable if not hasattr(func, '__call__'): raise pickle.PicklingError("func from reduce should be callable") save = self.save write = self.write # Protocol 2 special case: if func's name is __newobj__, use NEWOBJ if self.proto >= 2 and getattr(func, "__name__", "") == "__newobj__": cls = args[0] if not hasattr(cls, "__new__"): raise pickle.PicklingError( "args[0] from __newobj__ args has no __new__") if obj is not None and cls is not obj.__class__: raise pickle.PicklingError( "args[0] from __newobj__ args has the wrong class") args = args[1:] save(cls) save(args) write(pickle.NEWOBJ) else: save(func) save(args) write(pickle.REDUCE) if obj is not None: self.memoize(obj) # More new special cases (that work with older protocols as # well): when __reduce__ returns a tuple with 4 or 5 items, # the 4th and 5th item should be iterators that provide list # items and dict items (as (key, value) tuples), or None. if listitems is not None: self._batch_appends(listitems) if dictitems is not None: self._batch_setitems(dictitems) if state is not None: save(state) write(pickle.BUILD)
Example #14
Source File: cloudpickle.py From eggroll with Apache License 2.0 | 4 votes |
def save_dynamic_class(self, obj): """ Save a class that can't be stored as module global. This method is used to serialize classes that are defined inside functions, or that otherwise can't be serialized as attribute lookups from global modules. """ clsdict = dict(obj.__dict__) # copy dict proxy to a dict clsdict.pop('__weakref__', None) # On PyPy, __doc__ is a readonly attribute, so we need to include it in # the initial skeleton class. This is safe because we know that the # doc can't participate in a cycle with the original class. type_kwargs = {'__doc__': clsdict.pop('__doc__', None)} # If type overrides __dict__ as a property, include it in the type kwargs. # In Python 2, we can't set this attribute after construction. __dict__ = clsdict.pop('__dict__', None) if isinstance(__dict__, property): type_kwargs['__dict__'] = __dict__ save = self.save write = self.write # We write pickle instructions explicitly here to handle the # possibility that the type object participates in a cycle with its own # __dict__. We first write an empty "skeleton" version of the class and # memoize it before writing the class' __dict__ itself. We then write # instructions to "rehydrate" the skeleton class by restoring the # attributes from the __dict__. # # A type can appear in a cycle with its __dict__ if an instance of the # type appears in the type's __dict__ (which happens for the stdlib # Enum class), or if the type defines methods that close over the name # of the type, (which is utils for Python 2-style super() calls). # Push the rehydration function. save(_rehydrate_skeleton_class) # Mark the start of the args tuple for the rehydration function. write(pickle.MARK) # Create and memoize an skeleton class with obj's name and bases. tp = type(obj) self.save_reduce(tp, (obj.__name__, obj.__bases__, type_kwargs), obj=obj) # Now save the rest of obj's __dict__. Any references to obj # encountered while saving will point to the skeleton class. save(clsdict) # Write a tuple of (skeleton_class, clsdict). write(pickle.TUPLE) # Call _rehydrate_skeleton_class(skeleton_class, clsdict) write(pickle.REDUCE)
Example #15
Source File: cloudpickle.py From eggroll with Apache License 2.0 | 4 votes |
def save_function_tuple(self, func): """ Pickles an actual func object. A func comprises: code, globals, defaults, closure, and dict. We extract and save these, injecting reducing functions at certain points to recreate the func object. Keep in mind that some of these pieces can contain a ref to the func itself. Thus, a naive save on these pieces could trigger an infinite loop of save's. To get around that, we first create a skeleton func object using just the code (this is safe, since this won't contain a ref to the func), and memoize it as soon as it's created. The other stuff can then be filled in later. """ if is_tornado_coroutine(func): self.save_reduce(_rebuild_tornado_coroutine, (func.__wrapped__,), obj=func) return save = self.save write = self.write code, f_globals, defaults, closure_values, dct, base_globals = self.extract_func_data( func) save(_fill_function) # skeleton function updater write(pickle.MARK) # beginning of tuple that _fill_function expects self._save_subimports( code, itertools.chain(f_globals.values(), closure_values or ()), ) # create a skeleton function object and memoize it save(_make_skel_func) save(( code, len(closure_values) if closure_values is not None else -1, base_globals, )) write(pickle.REDUCE) self.memoize(func) # save the rest of the func data needed by _fill_function state = { 'globals': f_globals, 'defaults': defaults, 'dict': dct, 'module': func.__module__, 'closure_values': closure_values, } if hasattr(func, '__qualname__'): state['qualname'] = func.__qualname__ save(state) write(pickle.TUPLE) write(pickle.REDUCE) # applies _fill_function on the tuple