Python sklearn.metrics.accuracy_score() Examples
The following are 30
code examples of sklearn.metrics.accuracy_score().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.metrics
, or try the search function
.
Example #1
Source File: main.py From transferlearning with MIT License | 14 votes |
def classify_1nn(data_train, data_test): ''' Classification using 1NN Inputs: data_train, data_test: train and test csv file path Outputs: yprediction and accuracy ''' from sklearn.neighbors import KNeighborsClassifier from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler data = {'src': np.loadtxt(data_train, delimiter=','), 'tar': np.loadtxt(data_test, delimiter=','), } Xs, Ys, Xt, Yt = data['src'][:, :-1], data['src'][:, - 1], data['tar'][:, :-1], data['tar'][:, -1] Xs = StandardScaler(with_mean=0, with_std=1).fit_transform(Xs) Xt = StandardScaler(with_mean=0, with_std=1).fit_transform(Xt) clf = KNeighborsClassifier(n_neighbors=1) clf.fit(Xs, Ys) ypred = clf.predict(Xt) acc = accuracy_score(y_true=Yt, y_pred=ypred) print('Acc: {:.4f}'.format(acc)) return ypred, acc
Example #2
Source File: multi_class_classification.py From edge2vec with BSD 3-Clause "New" or "Revised" License | 11 votes |
def multi_class_classification(data_X,data_Y): ''' calculate multi-class classification and return related evaluation metrics ''' svc = svm.SVC(C=1, kernel='linear') # X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0) clf = svc.fit(data_X, data_Y) #svm # array = svc.coef_ # print array predicted = cross_val_predict(clf, data_X, data_Y, cv=2) print "accuracy",metrics.accuracy_score(data_Y, predicted) print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro') print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro') print "precision score",metrics.precision_score(data_Y, predicted, average='macro') print "recall score",metrics.recall_score(data_Y, predicted, average='macro') print "hamming_loss",metrics.hamming_loss(data_Y, predicted) print "classification_report", metrics.classification_report(data_Y, predicted) print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted) # print "log_loss", metrics.log_loss(data_Y, predicted) print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted) # print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted) # print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted)
Example #3
Source File: drop_connect_trainer.py From MNIST-baselines with MIT License | 7 votes |
def test(data, model, optimizer, logger, config): test_batches = (data.DATA_SIZE[1] + config["batch_size"] - 1) // config["batch_size"] for param in model.parameters(): param.requires_grad = False model.eval() prediction = np.zeros(data.DATA_SIZE[1], dtype=np.uint8) for i in range(test_batches): inputs = Variable(torch.from_numpy(data.data_test[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1]), :]), requires_grad=False).view(-1, 1, 45, 45) if config["cuda"] and torch.cuda.is_available(): inputs = inputs.cuda() outputs = model(inputs) prediction[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1])] = np.argmax(outputs.data.cpu().numpy(), axis=1) print('Accuracy: %0.2f' % (100 * accuracy_score(data.label_test, prediction))) init_dir(config['output_dir']) np.save(os.path.join(config['output_dir'], '%s_pred.npy' % config['method']), prediction)
Example #4
Source File: link_prediction.py From edge2vec with BSD 3-Clause "New" or "Revised" License | 7 votes |
def evaluation_analysis(true_label,predicted): ''' return all metrics results ''' print "accuracy",metrics.accuracy_score(true_label, predicted) print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro') print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro') print "precision score",metrics.precision_score(true_label, predicted, average='macro') print "recall score",metrics.recall_score(true_label, predicted, average='macro') print "hamming_loss",metrics.hamming_loss(true_label, predicted) print "classification_report", metrics.classification_report(true_label, predicted) print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted) print "log_loss", metrics.log_loss(true_label, predicted) print "zero_one_loss", metrics.zero_one_loss(true_label, predicted) print "AUC&ROC",metrics.roc_auc_score(true_label, predicted) print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted)
Example #5
Source File: accuracy.py From pipeline with MIT License | 7 votes |
def calculate(self): if not self._predictions: raise PipelineError("You need to add predictions for calculating the accuracy first") y_pred = np.concatenate(self._predictions) y_true = np.concatenate(self._true_labels) if y_pred.shape[-1] == 1: # Binary classification y_pred = (y_pred >= self._border).astype("int") else: y_pred = np.argmax(y_pred, -1) if len(y_true.shape) != 1: y_true = np.argmax(y_true, -1) result = accuracy_score(y_true, y_pred) return {"accuracy": result}
Example #6
Source File: utils.py From Text-Classification-Models-Pytorch with MIT License | 6 votes |
def evaluate_model(model, iterator): all_preds = [] all_y = [] for idx,batch in enumerate(iterator): if torch.cuda.is_available(): batch = [Variable(record).cuda() for record in batch] else: batch = [Variable(record).cuda() for record in batch] x, y = batch y_pred = model(x) predicted = torch.max(y_pred.cpu().data, 1)[1] all_preds.extend(predicted.numpy()) all_y.extend(y.cpu().numpy()) score = accuracy_score(all_y, np.array(all_preds).flatten()) return score
Example #7
Source File: utils.py From Attention-Gated-Networks with MIT License | 6 votes |
def classification_scores(gts, preds, labels): accuracy = metrics.accuracy_score(gts, preds) class_accuracies = [] for lab in labels: # TODO Fix class_accuracies.append(metrics.accuracy_score(gts[gts == lab], preds[gts == lab])) class_accuracies = np.array(class_accuracies) f1_micro = metrics.f1_score(gts, preds, average='micro') precision_micro = metrics.precision_score(gts, preds, average='micro') recall_micro = metrics.recall_score(gts, preds, average='micro') f1_macro = metrics.f1_score(gts, preds, average='macro') precision_macro = metrics.precision_score(gts, preds, average='macro') recall_macro = metrics.recall_score(gts, preds, average='macro') # class wise score f1s = metrics.f1_score(gts, preds, average=None) precisions = metrics.precision_score(gts, preds, average=None) recalls = metrics.recall_score(gts, preds, average=None) confusion = metrics.confusion_matrix(gts,preds, labels=labels) #TODO confusion matrix, recall, precision return accuracy, f1_micro, precision_micro, recall_micro, f1_macro, precision_macro, recall_macro, confusion, class_accuracies, f1s, precisions, recalls
Example #8
Source File: train_eval.py From Bert-Chinese-Text-Classification-Pytorch with MIT License | 6 votes |
def evaluate(config, model, data_iter, test=False): model.eval() loss_total = 0 predict_all = np.array([], dtype=int) labels_all = np.array([], dtype=int) with torch.no_grad(): for texts, labels in data_iter: outputs = model(texts) loss = F.cross_entropy(outputs, labels) loss_total += loss labels = labels.data.cpu().numpy() predic = torch.max(outputs.data, 1)[1].cpu().numpy() labels_all = np.append(labels_all, labels) predict_all = np.append(predict_all, predic) acc = metrics.accuracy_score(labels_all, predict_all) if test: report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4) confusion = metrics.confusion_matrix(labels_all, predict_all) return acc, loss_total / len(data_iter), report, confusion return acc, loss_total / len(data_iter)
Example #9
Source File: label_accuracy.py From linguistic-style-transfer with Apache License 2.0 | 6 votes |
def get_label_accuracy(predictions_file_path, gold_labels_file_path, saved_model_path): with open(os.path.join(saved_model_path, global_config.label_to_index_dict_file), 'r') as json_file: label_to_index_map = json.load(json_file) gold_labels = list() prediction_labels = list() with open(gold_labels_file_path) as gold_labels_file: for text_label in gold_labels_file: gold_labels.append(label_to_index_map[text_label.strip()]) with open(predictions_file_path) as predictions_file: for label in predictions_file: prediction_labels.append(int(label.strip())) accuracy = metrics.accuracy_score(y_true=gold_labels, y_pred=prediction_labels) logger.info("Classification Accuracy: {}".format(accuracy))
Example #10
Source File: toxcast_maml.py From deepchem with MIT License | 6 votes |
def compute_scores(optimize): maml.restore() y_true = [] y_pred = [] losses = [] for task in range(learner.n_training_tasks, n_tasks): learner.set_task_index(task) if optimize: maml.train_on_current_task(restore=True) inputs = learner.get_batch() loss, prediction = maml.predict_on_batch(inputs) y_true.append(inputs[1]) y_pred.append(prediction[0][:, 0]) losses.append(loss) y_true = np.concatenate(y_true) y_pred = np.concatenate(y_pred) print() print('Cross entropy loss:', np.mean(losses)) print('Prediction accuracy:', accuracy_score(y_true, y_pred > 0.5)) print('ROC AUC:', dc.metrics.roc_auc_score(y_true, y_pred)) print()
Example #11
Source File: textpro.py From comparable-text-miner with Apache License 2.0 | 6 votes |
def evaluate(trueValues, predicted, decimals, note): print note label = 1 avg = 'weighted' a = accuracy_score(trueValues, predicted) p = precision_score(trueValues, predicted, pos_label=label, average=avg) r = recall_score(trueValues, predicted, pos_label=label, average=avg) avg_f1 = f1_score(trueValues, predicted, pos_label=label, average=avg) fclasses = f1_score(trueValues, predicted, average=None) f1c1 = fclasses[0]; f1c2 = fclasses[1] fw = (f1c1 + f1c2)/2.0 print 'accuracy:\t', str(round(a,decimals)) print 'precision:\t', str(round(p,decimals)) print 'recall:\t', str(round(r,decimals)) print 'avg f1:\t', str(round(avg_f1,decimals)) print 'c1 f1:\t', str(round(f1c1,decimals)) print 'c2 f1:\t', str(round(f1c2,decimals)) print 'avg(c1,c2):\t', str(round(fw,decimals)) print '------------' ################################################################################### # split a parallel or comparable corpus into two parts
Example #12
Source File: score_dataset.py From snape with Apache License 2.0 | 6 votes |
def score_multiclass_classification(y, y_hat, report=True): """ Create multiclass classification score :param y: :param y_hat: :return: """ report_string = "---Multiclass Classification Score--- \n" report_string += classification_report(y, y_hat) score = accuracy_score(y, y_hat) report_string += "\nAccuracy = " + str(score) if report: print(report_string) return score, report_string
Example #13
Source File: pcnn_model.py From PCNN with Apache License 2.0 | 6 votes |
def run_evaluate(self, test): """Evaluates performance on test set Args: test: dataset that yields tuple of (sentences, relation tags) Returns: metrics: (dict) metrics["acc"] = 98.4, ... """ y_true, y_pred = [], [] for data in minibatches(test, self.config.batch_size): word_batch, pos1_batch, pos2_batch, pos_batch, y_batch = data relations_pred = self.predict_batch(word_batch, pos1_batch, pos2_batch, pos_batch) assert len(relations_pred) == len(y_batch) y_true += y_batch y_pred += relations_pred.tolist() acc = accuracy_score(y_true, y_pred) p = precision_score(y_true, y_pred, average='macro') r = recall_score(y_true, y_pred, average='macro') f1 = f1_score(y_true, y_pred, average='macro') return {"acc":acc, "p":p, "r":r, "f1":f1}
Example #14
Source File: run.py From fever-naacl-2018 with Apache License 2.0 | 6 votes |
def print_evaluation(model,data,ls,log=None): features,actual = data predictions = predict(model, features, 500).data.numpy().reshape(-1).tolist() labels = [ls.idx[i] for i, _ in enumerate(ls.idx)] actual = [labels[i] for i in actual] predictions = [labels[i] for i in predictions] print(accuracy_score(actual, predictions)) print(classification_report(actual, predictions)) print(confusion_matrix(actual, predictions)) data = zip(actual,predictions) if log is not None: f = open(log, "w+") for a,p in data: f.write(json.dumps({"actual": a, "predicted": p}) + "\n") f.close()
Example #15
Source File: dnn_trainer.py From MNIST-baselines with MIT License | 6 votes |
def test(data, model, optimizer, logger, config): test_batches = (data.DATA_SIZE[1] + config["batch_size"] - 1) // config["batch_size"] for param in model.parameters(): param.requires_grad = False model.eval() prediction = np.zeros(data.DATA_SIZE[1], dtype=np.uint8) for i in range(test_batches): inputs = Variable(torch.from_numpy(data.data_test[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1]), :]), requires_grad=False).view(-1, 1, 45, 45) if config["cuda"] and torch.cuda.is_available(): inputs = inputs.cuda() outputs = model(inputs) prediction[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1])] = np.argmax(outputs.data.cpu().numpy(), axis=1) print('Accuracy: %0.2f' % (100 * accuracy_score(data.label_test, prediction))) init_dir(config['output_dir']) np.save(os.path.join(config['output_dir'], '%s_pred.npy' % config['method']), prediction)
Example #16
Source File: capsnet_trainer.py From MNIST-baselines with MIT License | 6 votes |
def test(data, model, optimizer, logger, config): test_batches = (data.DATA_SIZE[1] + config["batch_size"] - 1) // config["batch_size"] for param in model.parameters(): param.requires_grad = False model.eval() prediction = np.zeros(data.DATA_SIZE[1], dtype=np.uint8) for i in range(test_batches): inputs = Variable(torch.from_numpy(data.data_test[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1]), :]), requires_grad=False).view(-1, 1, 45, 45) if config["cuda"] and torch.cuda.is_available(): inputs = inputs.cuda() outputs, probs = model(inputs) prediction[i * config["batch_size"]: min((i + 1) * config["batch_size"], data.DATA_SIZE[1])] = np.argmax(probs.data.cpu().numpy(), axis=1) print('Accuracy: %0.2f' % (100 * accuracy_score(data.label_test, prediction))) init_dir(config['output_dir']) np.save(os.path.join(config['output_dir'], '%s_pred.npy' % config['method']), prediction)
Example #17
Source File: utils.py From Text-Classification-Models-Pytorch with MIT License | 5 votes |
def evaluate_model(model, iterator): all_preds = [] all_y = [] for idx,batch in enumerate(iterator): if torch.cuda.is_available(): x = batch.text.cuda() else: x = batch.text y_pred = model(x) predicted = torch.max(y_pred.cpu().data, 1)[1] + 1 all_preds.extend(predicted.numpy()) all_y.extend(batch.label.numpy()) score = accuracy_score(all_y, np.array(all_preds).flatten()) return score
Example #18
Source File: model.py From Text-Classification-Models-Pytorch with MIT License | 5 votes |
def run_epoch(self, train_data, val_data): train_x, train_y = train_data[0], train_data[1] val_x, val_y = val_data[0], val_data[1] iterator = data_iterator(train_x, train_y, self.config.batch_size) train_losses = [] val_accuracies = [] losses = [] for i, (x,y) in enumerate(iterator): self.optimizer.zero_grad() x = Tensor(x).cuda() y_pred = self.__call__(x) loss = self.loss_op(y_pred, torch.cuda.LongTensor(y-1)) loss.backward() losses.append(loss.data.cpu().numpy()) self.optimizer.step() if (i + 1) % 50 == 0: print("Iter: {}".format(i+1)) avg_train_loss = np.mean(losses) train_losses.append(avg_train_loss) print("\tAverage training loss: {:.5f}".format(avg_train_loss)) losses = [] # Evalute Accuracy on validation set self.eval() all_preds = [] val_iterator = data_iterator(val_x, val_y, self.config.batch_size) for x, y in val_iterator: x = Variable(Tensor(x)) y_pred = self.__call__(x.cuda()) predicted = torch.max(y_pred.cpu().data, 1)[1] + 1 all_preds.extend(predicted.numpy()) score = accuracy_score(val_y, np.array(all_preds).flatten()) val_accuracies.append(score) print("\tVal Accuracy: {:.4f}".format(score)) self.train() return train_losses, val_accuracies
Example #19
Source File: train_predict_trees_batch3.py From wsdm19cup with MIT License | 5 votes |
def validate_predict(model,X,y,X_test,n_splits=10,seed=42,model_type='lgb',verbose=0, sample_weights=sample_weights): preds = np.zeros((X.shape[0],3)) preds_test = np.zeros((X_test.shape[0],3)) cv_scores = [] skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) for idx_train, idx_val in skf.split(X, y): X_train, X_val = X[idx_train,:], X[idx_val,:] y_train, y_val = y[idx_train], y[idx_val] if model_type == 'lgb': model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_val, y_val)], verbose=verbose) else: model.fit(X_train, y_train) if hasattr(model, 'predict_proba'): yhat_val = model.predict_proba(X_val) preds_test = preds_test + model.predict_proba(X_test) preds[idx_val] = yhat_val else: yhat_val = model.predict(X_val) preds_test = preds_test + model.predict(X_test) preds[idx_val] = yhat_val cv_scores.append(accuracy_score(y_val, np.array(['agreed', 'disagreed', 'unrelated'])[np.argmax(yhat_val,axis=1)])) print("local cv", np.mean(cv_scores), np.std(cv_scores)) print(f"Val accuracy: {accuracy_score(y, np.array(['agreed', 'disagreed', 'unrelated'])[np.argmax(preds,axis=1)], sample_weight=sample_weights):.5f}") preds_test /= n_splits return preds, preds_test
Example #20
Source File: train_predict_trees_batch2.py From wsdm19cup with MIT License | 5 votes |
def validate_predict(model,X,y,X_test,n_splits=10,seed=42,model_type='lgb',verbose=0, sample_weights=sample_weights): preds = np.zeros((X.shape[0],3)) preds_test = np.zeros((X_test.shape[0],3)) cv_scores = [] skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=seed) for idx_train, idx_val in skf.split(X, y): X_train, X_val = X[idx_train,:], X[idx_val,:] y_train, y_val = y[idx_train], y[idx_val] if model_type == 'lgb': model.fit(X_train, y_train, eval_set=[(X_train, y_train), (X_val, y_val)], verbose=verbose) else: model.fit(X_train, y_train) if hasattr(model, 'predict_proba'): yhat_val = model.predict_proba(X_val) preds_test = preds_test + model.predict_proba(X_test) preds[idx_val] = yhat_val else: yhat_val = model.predict(X_val) preds_test = preds_test + model.predict(X_test) preds[idx_val] = yhat_val cv_scores.append(accuracy_score(y_val, np.array(['agreed', 'disagreed', 'unrelated'])[np.argmax(yhat_val,axis=1)])) print("local cv", np.mean(cv_scores), np.std(cv_scores)) print(f"Val accuracy: {accuracy_score(y, np.array(['agreed', 'disagreed', 'unrelated'])[np.argmax(preds,axis=1)], sample_weight=sample_weights):.5f}") preds_test /= n_splits return preds, preds_test ### TRAIN - PREDICT ###
Example #21
Source File: Deopen_classification.py From Deopen with MIT License | 5 votes |
def model_test(net, X_test, y_test, outputfile): #net.load_params_from('saved_weights_file') y_pred = net.predict(X_test) y_prob = net.predict_proba(X_test) print 'Accuracy score is {}'.format(metrics.accuracy_score(y_test, y_pred)) print 'ROC AUC score is {}'.format(metrics.roc_auc_score(y_test, y_prob[:,-1])) hkl.dump([y_prob[:,-1],y_test],outputfile) #save model parameters
Example #22
Source File: utils.py From Text-Classification-Models-Pytorch with MIT License | 5 votes |
def evaluate_model(model, iterator): all_preds = [] all_y = [] for idx,batch in enumerate(iterator): if torch.cuda.is_available(): x = batch.text.cuda() else: x = batch.text y_pred = model(x) predicted = torch.max(y_pred.cpu().data, 1)[1] + 1 all_preds.extend(predicted.numpy()) all_y.extend(batch.label.numpy()) score = accuracy_score(all_y, np.array(all_preds).flatten()) return score
Example #23
Source File: run.py From fever-naacl-2018 with Apache License 2.0 | 5 votes |
def evaluate(model,data,labels,batch_size): predicted = predict(model,data,batch_size) return accuracy_score(labels,predicted.data.numpy().reshape(-1))
Example #24
Source File: CorrMCNN_Arch2.py From DeepLearn with MIT License | 5 votes |
def svm_classifier(train_x, train_y, valid_x, valid_y, test_x, test_y): clf = svm.LinearSVC() #print train_x.shape,train_y.shape clf.fit(train_x,train_y) pred = clf.predict(valid_x) va = accuracy_score(np.ravel(valid_y),np.ravel(pred)) pred = clf.predict(test_x) ta = accuracy_score(np.ravel(test_y),np.ravel(pred)) return va, ta
Example #25
Source File: XRMB_CNN_17.06.v2.py From DeepLearn with MIT License | 5 votes |
def svm_classifier(train_x, train_y, valid_x, valid_y, test_x, test_y): clf = svm.LinearSVC() #print train_x.shape,train_y.shape clf.fit(train_x,train_y) pred = clf.predict(valid_x) va = accuracy_score(np.ravel(valid_y),np.ravel(pred)) pred = clf.predict(test_x) ta = accuracy_score(np.ravel(test_y),np.ravel(pred)) return va, ta
Example #26
Source File: DeepLearn_cornet.py From DeepLearn with MIT License | 5 votes |
def svm_classifier(train_x, train_y, valid_x, valid_y, test_x, test_y): clf = svm.LinearSVC() #print train_x.shape,train_y.shape clf.fit(train_x,train_y) pred = clf.predict(valid_x) va = accuracy_score(np.ravel(valid_y),np.ravel(pred)) pred = clf.predict(test_x) ta = accuracy_score(np.ravel(test_y),np.ravel(pred)) return va, ta
Example #27
Source File: attack.py From robust_physical_perturbations with MIT License | 5 votes |
def calculate_acc(self): assert FLAGS.validation_set is not None assert self.val_data is not None val_feed_dict = self.create_feed_dict(np.array(self.val_data), self.attack_graph) net_predictions = self.sess.run(tf.argmax(self.attack_graph.adv_pred, axis=1), \ feed_dict=val_feed_dict) labels = [FLAGS.attack_target for _ in range(len(net_predictions))] val_feed_dict = None gc.collect() return accuracy_score(labels, net_predictions, normalize=True)
Example #28
Source File: attack_util.py From robust_physical_perturbations with MIT License | 5 votes |
def model_eval(labels, net_predictions): return accuracy_score(labels, net_predictions, normalize=True)
Example #29
Source File: eval_lcqmc_order.py From BERT with Apache License 2.0 | 5 votes |
def eval_fn(result): i = 0 total_accuracy = 0 total_loss = 0.0 pred_prob = [] label, label_id = [], [] label_weight = [] while True: try: eval_result = sess.run(result) total_accuracy += eval_result["accuracy"] label_id.extend(eval_result["label_ids"]) label.extend(eval_result["pred_label"]) total_loss += eval_result["loss"] pred_prob.extend(eval_result["pred_prob"]) # for item in eval_result["label_ids"]: # label_weight.append(label_tensor[item]) i += 1 except tf.errors.OutOfRangeError: print("End of dataset") break # f1 = f1_score(label_id, label, average="macro", sample_weight=label_weight) # accuracy = accuracy_score(label_id, label, sample_weight=label_weight) f1 = f1_score(label_id, label, average="macro") accuracy = accuracy_score(label_id, label) print("test accuracy {} accuracy {} loss {} f1 {}".format(total_accuracy/i, accuracy, total_loss/i, f1)) return pred_prob
Example #30
Source File: __init__.py From PADME with MIT License | 5 votes |
def balanced_accuracy_score(y, y_pred): """Computes balanced accuracy score.""" num_positive = float(np.count_nonzero(y)) num_negative = float(len(y) - num_positive) pos_weight = num_negative / num_positive weights = np.ones_like(y) weights[y != 0] = pos_weight return accuracy_score(y, y_pred, sample_weight=weights)