Python numpy.genfromtxt() Examples
The following are 30
code examples of numpy.genfromtxt().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_names_with_usecols_bug1636(self): # Make sure we pick up the right names w/ usecols data = "A,B,C,D,E\n0,1,2,3,4\n0,1,2,3,4\n0,1,2,3,4" ctrl_names = ("A", "C", "E") test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=(0, 2, 4), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=(int, int, int), delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names) # test = np.genfromtxt(TextIO(data), dtype=int, delimiter=",", usecols=("A", "C", "E"), names=True) assert_equal(test.dtype.names, ctrl_names)
Example #2
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_utf8_file(self): utf8 = b"\xcf\x96" with temppath() as path: with open(path, "wb") as f: f.write((b"test1,testNonethe" + utf8 + b",test3\n") * 2) test = np.genfromtxt(path, dtype=None, comments=None, delimiter=',', encoding="UTF-8") ctl = np.array([ ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"], ["test1", "testNonethe" + utf8.decode("UTF-8"), "test3"]], dtype=np.unicode) assert_array_equal(test, ctl) # test a mixed dtype with open(path, "wb") as f: f.write(b"0,testNonethe" + utf8) test = np.genfromtxt(path, dtype=None, comments=None, delimiter=',', encoding="UTF-8") assert_equal(test['f0'], 0) assert_equal(test['f1'], "testNonethe" + utf8.decode("UTF-8"))
Example #3
Source File: sequence_folders.py From SfmLearner-Pytorch with MIT License | 6 votes |
def crawl_folders(self, sequence_length): sequence_set = [] demi_length = (sequence_length-1)//2 shifts = list(range(-demi_length, demi_length + 1)) shifts.pop(demi_length) for scene in self.scenes: intrinsics = np.genfromtxt(scene/'cam.txt').astype(np.float32).reshape((3, 3)) imgs = sorted(scene.files('*.jpg')) if len(imgs) < sequence_length: continue for i in range(demi_length, len(imgs)-demi_length): sample = {'intrinsics': intrinsics, 'tgt': imgs[i], 'ref_imgs': []} for j in shifts: sample['ref_imgs'].append(imgs[i+j]) sequence_set.append(sample) random.shuffle(sequence_set) self.samples = sequence_set
Example #4
Source File: platereader.py From assaytools with GNU Lesser General Public License v2.1 | 6 votes |
def read_emission_spectra_text(filename): """ Read text-formatted emission spectra. Parameters ---------- filename : str The Tecan Infinite output filen to be read. Returns ------- SRC_280 : numpy.array SRC_280_x : numpy.array SRC_280_x_num : numpy.array Examples -------- """ SRC_280 = np.genfromtxt(filename, dtype='str') SRC_280_x = SRC_280[0,:] SRC_280_x_num = re.findall(r'\d+', str(SRC_280_x )[1:-1]) return [SRC_280, SRC_280_x, SRC_280_x_num]
Example #5
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', object)])] with assert_raises_regex(NotImplementedError, 'Nested fields.* not supported.*'): test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters)
Example #6
Source File: plot.py From rl_graph_generation with BSD 3-Clause "New" or "Revised" License | 6 votes |
def load_results(file): if not os.path.exists(file): return None with open(file, 'r') as f: lines = [line for line in f] if len(lines) < 2: return None keys = [name.strip() for name in lines[0].split(',')] data = np.genfromtxt(file, delimiter=',', skip_header=1, filling_values=0.) if data.ndim == 1: data = data.reshape(1, -1) assert data.ndim == 2 assert data.shape[-1] == len(keys) result = {} for idx, key in enumerate(keys): result[key] = data[:, idx] return result
Example #7
Source File: test_io.py From lambda-packs with MIT License | 6 votes |
def test_commented_header(self): # Check that names can be retrieved even if the line is commented out. data = TextIO(""" #gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) # The # is part of the first name and should be deleted automatically. test = np.genfromtxt(data, names=True, dtype=None) ctrl = np.array([('M', 21, 72.1), ('F', 35, 58.33), ('M', 33, 21.99)], dtype=[('gender', '|S1'), ('age', int), ('weight', float)]) assert_equal(test, ctrl) # Ditto, but we should get rid of the first element data = TextIO(b""" # gender age weight M 21 72.100000 F 35 58.330000 M 33 21.99 """) test = np.genfromtxt(data, names=True, dtype=None) assert_equal(test, ctrl)
Example #8
Source File: depth_evaluation_utils.py From SfmLearner-Pytorch with MIT License | 6 votes |
def get_displacements_from_speed(root, date, scene, indices, tgt_index): """get displacement magnitudes by integrating over speed values. Might be a good alternative if the GPS is not good enough""" if len(indices) == 0: return [] oxts_root = root/date/scene/'oxts' with open(oxts_root/'timestamps.txt') as f: timestamps = np.array([datetime.datetime.strptime(ts[:-3], "%Y-%m-%d %H:%M:%S.%f").timestamp() for ts in f.read().splitlines()]) speeds = np.zeros((len(indices), 3)) for i, index in enumerate(indices): oxts_data = np.genfromtxt(oxts_root/'data'/'{:010d}.txt'.format(index)) speeds[i] = oxts_data[[6,7,10]] displacements = np.zeros((len(indices), 3)) # Perform the integration operation, using trapezoidal method for i0, (i1, i2) in enumerate(zip(indices, indices[1:])): displacements[i0 + 1] = displacements[i0] + 0.5*(speeds[i0] + speeds[i0 + 1]) * (timestamps[i1] - timestamps[i2]) # Set the origin of displacements at tgt_index displacements -= displacements[tgt_index] # Finally, get the displacement magnitude relative to tgt and discard the middle value (which is supposed to be 0) displacements_mag = np.linalg.norm(displacements, axis=1) return np.concatenate([displacements_mag[:tgt_index], displacements_mag[tgt_index + 1:]])
Example #9
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_skip_footer_with_invalid(self): with suppress_warnings() as sup: sup.filter(ConversionWarning) basestr = '1 1\n2 2\n3 3\n4 4\n5 \n6 \n7 \n' # Footer too small to get rid of all invalid values assert_raises(ValueError, np.genfromtxt, TextIO(basestr), skip_footer=1) # except ValueError: # pass a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # a = np.genfromtxt(TextIO(basestr), skip_footer=3) assert_equal(a, np.array([[1., 1.], [2., 2.], [3., 3.], [4., 4.]])) # basestr = '1 1\n2 \n3 3\n4 4\n5 \n6 6\n7 7\n' a = np.genfromtxt( TextIO(basestr), skip_footer=1, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.], [6., 6.]])) a = np.genfromtxt( TextIO(basestr), skip_footer=3, invalid_raise=False) assert_equal(a, np.array([[1., 1.], [3., 3.], [4., 4.]]))
Example #10
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_skip_footer(self): data = ["# %i" % i for i in range(1, 6)] data.append("A, B, C") data.extend(["%i,%3.1f,%03s" % (i, i, i) for i in range(51)]) data[-1] = "99,99" kwargs = dict(delimiter=",", names=True, skip_header=5, skip_footer=10) test = np.genfromtxt(TextIO("\n".join(data)), **kwargs) ctrl = np.array([("%f" % i, "%f" % i, "%f" % i) for i in range(41)], dtype=[(_, float) for _ in "ABC"]) assert_equal(test, ctrl)
Example #11
Source File: test_io.py From lambda-packs with MIT License | 6 votes |
def test_dtype_with_object(self): # Test using an explicit dtype with an object data = """ 1; 2001-01-01 2; 2002-01-31 """ ndtype = [('idx', int), ('code', np.object)] func = lambda s: strptime(s.strip(), "%Y-%m-%d") converters = {1: func} test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) control = np.array( [(1, datetime(2001, 1, 1)), (2, datetime(2002, 1, 31))], dtype=ndtype) assert_equal(test, control) ndtype = [('nest', [('idx', int), ('code', np.object)])] try: test = np.genfromtxt(TextIO(data), delimiter=";", dtype=ndtype, converters=converters) except NotImplementedError: pass else: errmsg = "Nested dtype involving objects should be supported." raise AssertionError(errmsg)
Example #12
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_replace_space(self): # Test the 'replace_space' option txt = "A.A, B (B), C:C\n1, 2, 3.14" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=None, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", float)] ctrl = np.array((1, 2, 3.14), dtype=ctrl_dtype) assert_equal(test, ctrl)
Example #13
Source File: ply_from_array.py From pypoisson with MIT License | 6 votes |
def points_normals_from(filename): array = np.genfromtxt(filename) return array[:,0:3], array[:,3:6]
Example #14
Source File: io.py From jwalk with Apache License 2.0 | 6 votes |
def load_edges(fpath, delimiter=None, has_header=False): """Load edges in CSV format as numpy ndarray of strings. Args: fpath (str): edges file delimiter (str): alternative argument name for sep (default=None) has_header (bool): True if has header row Returns: np.ndarray: array of edges """ if PANDAS_INSTALLED: header = 'infer' if has_header else None df = pd.read_csv(fpath, delimiter=delimiter, header=header) edges = df.values else: logger.warning("Pandas not installed. Using numpy to load csv, which " "is slower.") header = 1 if has_header else 0 edges = np.genfromtxt(fpath, delimiter=delimiter, skip_header=header, dtype=object) return edges.astype('str')
Example #15
Source File: plot.py From HardRLWithYoutube with MIT License | 6 votes |
def load_results(file): if not os.path.exists(file): return None with open(file, 'r') as f: lines = [line for line in f] if len(lines) < 2: return None keys = [name.strip() for name in lines[0].split(',')] data = np.genfromtxt(file, delimiter=',', skip_header=1, filling_values=0.) if data.ndim == 1: data = data.reshape(1, -1) assert data.ndim == 2 assert data.shape[-1] == len(keys) result = {} for idx, key in enumerate(keys): result[key] = data[:, idx] return result
Example #16
Source File: malware.py From trees with Apache License 2.0 | 6 votes |
def read_data(labelsname, distancename): ## Extract labels rawlabels = np.genfromtxt(labelsname, delimiter=',', dtype=None) labelmap = {} row_len = 0 for row in rawlabels: row_len = max(row_len, len(row)-1) name = row[0] labelmap[name] = list(row)[1:] ## Extract distances rawdistances = np.genfromtxt(distancename, delimiter=',', dtype=None) names = rawdistances[0][1:] distances = np.array(rawdistances[1:, 1:], dtype=float) labels = np.zeros((len(names), row_len)) for i, name in enumerate(names): labels[i, 0:(len(row))] = labelmap[name] del labelmap return distances, labels, names
Example #17
Source File: plot.py From lirpg with MIT License | 6 votes |
def load_results(file): if not os.path.exists(file): return None with open(file, 'r') as f: lines = [line for line in f] if len(lines) < 2: return None keys = [name.strip() for name in lines[0].split(',')] data = np.genfromtxt(file, delimiter=',', skip_header=1, filling_values=0.) if data.ndim == 1: data = data.reshape(1, -1) assert data.ndim == 2 assert data.shape[-1] == len(keys) result = {} for idx, key in enumerate(keys): result[key] = data[:, idx] return result
Example #18
Source File: test_io.py From recruit with Apache License 2.0 | 6 votes |
def test_replace_space_known_dtype(self): # Test the 'replace_space' (and related) options when dtype != None txt = "A.A, B (B), C:C\n1, 2, 3" # Test default: replace ' ' by '_' and delete non-alphanum chars test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int) ctrl_dtype = [("AA", int), ("B_B", int), ("CC", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no replace, no delete test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int, replace_space='', deletechars='') ctrl_dtype = [("A.A", int), ("B (B)", int), ("C:C", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl) # Test: no delete (spaces are replaced by _) test = np.genfromtxt(TextIO(txt), delimiter=",", names=True, dtype=int, deletechars='') ctrl_dtype = [("A.A", int), ("B_(B)", int), ("C:C", int)] ctrl = np.array((1, 2, 3), dtype=ctrl_dtype) assert_equal(test, ctrl)
Example #19
Source File: pose_evaluation_utils.py From SfmLearner-Pytorch with MIT License | 6 votes |
def read_scene_data(data_root, sequence_set, seq_length=3, step=1): data_root = Path(data_root) im_sequences = [] poses_sequences = [] indices_sequences = [] demi_length = (seq_length - 1) // 2 shift_range = np.array([step*i for i in range(-demi_length, demi_length + 1)]).reshape(1, -1) sequences = set() for seq in sequence_set: corresponding_dirs = set((data_root/'sequences').dirs(seq)) sequences = sequences | corresponding_dirs print('getting test metadata for theses sequences : {}'.format(sequences)) for sequence in tqdm(sequences): poses = np.genfromtxt(data_root/'poses'/'{}.txt'.format(sequence.name)).astype(np.float64).reshape(-1, 3, 4) imgs = sorted((sequence/'image_2').files('*.png')) # construct 5-snippet sequences tgt_indices = np.arange(demi_length, len(imgs) - demi_length).reshape(-1, 1) snippet_indices = shift_range + tgt_indices im_sequences.append(imgs) poses_sequences.append(poses) indices_sequences.append(snippet_indices) return im_sequences, poses_sequences, indices_sequences
Example #20
Source File: test.py From CalculiX-Examples with MIT License | 5 votes |
def run(): etypes = ("qu4", "qu8", "qu8r") ctypes = ("tie", "equ", "pc-ns", "pc-ss") r=open("Results.md",'w') r.write("Elem | Contact | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10\n") r.write(":-- | :-- | --: | --: | --: | --: | --: | --: | --: | --: | --: | --:\n") for ctyp in ctypes: for etyp in etypes: # cleanup and create sim dir simPath = etyp + "_" + ctyp if os.path.exists(simPath): shutil.rmtree(simPath) os.mkdir(simPath) # get the command files shutil.copyfile("run.fbd",os.path.join(simPath,"run.fbd")) shutil.copyfile(ctyp+".inp",os.path.join(simPath,ctyp+".inp")) # generate parameter file with open(os.path.join(simPath, "values.fbd"), "w") as f: f.write("valu etyp " + etyp + "\n") f.write("valu ctyp " + ctyp + "\n") f.write("valu last quit \n") # run the simulation os.chdir(simPath) os.system("cgx -bg run.fbd") # extract frequencies os.system("dat2txt.py " + ctyp) freq=numpy.genfromtxt("Eigenvalues_1.txt",skip_header=1) os.chdir("..") # write frequencies to results file r.write("{0:6} | {1:6} ".format(etyp,ctyp)) for i in range(10): # the frequency is the third last column (freq can have 4 or 5 columns) fcol=len(freq[0])-2 r.write(" | " + "{0:8.3g}".format(freq[i,fcol])) r.write("\n") r.close()
Example #21
Source File: LSDMappingTools.py From LSDMappingTools with MIT License | 5 votes |
def read_ascii_raster(ascii_raster_file): import numpy as np with open(ascii_raster_file) as f: header_data = [float(f.next().split()[1]) for x in xrange(6)] #read the first 6 lines raster_data = np.genfromtxt(ascii_raster_file, delimiter=' ', skip_header=6) raster_data = raster_data.reshape(header_data[1], header_data[0]) #rows, columns return raster_data, header_data # this gets the extent of the asc for use with plotting # It returns a list with 4 elements, x_min, x_max, y_min,y_max
Example #22
Source File: raster_plotter_2d_ascii_chanfile_version.py From LSDMappingTools with MIT License | 5 votes |
def read_ascii_raster(ascii_raster_file): import numpy as np with open(ascii_raster_file) as f: header_data = [float(f.next().split()[1]) for x in xrange(6)] #read the first 6 lines raster_data = np.genfromtxt(ascii_raster_file, delimiter=' ', skip_header=6) raster_data = raster_data.reshape(header_data[1], header_data[0]) #rows, columns return raster_data, header_data
Example #23
Source File: imagenet.py From tensornets with MIT License | 5 votes |
def get_files(data_dir, data_name, max_rows=None): """Reads a \`data_name.txt\` (e.g., \`val.txt\`) from http://www.image-net.org/challenges/LSVRC/2012/ """ files, labels = np.split( np.genfromtxt("%s/%s.txt" % (data_dir, data_name), dtype=np.str, max_rows=max_rows), [1], axis=1) files = files.flatten() labels = np.asarray(labels.flatten(), dtype=np.int) return files, labels
Example #24
Source File: sigma_database_parser.py From gmpe-smtk with GNU Affero General Public License v3.0 | 5 votes |
def parse_spectra(self): """ Parses the Spectra to an instance of the database dictionary """ damping_list = ["damping_02", "damping_05", "damping_07", "damping_10", "damping_20", "damping_30"] sm_record = OrderedDict([ ("X", {"Scalar": {}, "Spectra": {"Response": {}}}), ("Y", {"Scalar": {}, "Spectra": {"Response": {}}}), ("V", {"Scalar": {}, "Spectra": {"Response": {}}})]) target_names = list(sm_record) for iloc, ifile in enumerate(self.input_files): if not os.path.exists(ifile): continue data = np.genfromtxt(ifile, skip_header=1) per = data[:-1, 0] spec_acc = data[:-1, 1:] pgv = 100.0 * data[-1, 1] num_per = len(per) sm_record[target_names[iloc]]["Scalar"]["PGA"] =\ {"Value": 100.0 * spec_acc[0, 0], "Units": "cm/s/s"} sm_record[target_names[iloc]]["Scalar"]["PGV"] =\ {"Value": pgv, "Units": "cm/s"} sm_record[target_names[iloc]]["Spectra"]["Response"] = { "Periods": per, "Number Periods" : num_per, "Acceleration" : {"Units": "cm/s/s"}, "Velocity" : None, "Displacement" : None, "PSA" : None, "PSV" : None} for jloc, damping in enumerate(damping_list): sm_record[target_names[iloc]]["Spectra"]["Response"]\ ["Acceleration"][damping] = 100.0 * data[:-1, jloc + 1] return sm_record
Example #25
Source File: simple_flatfile_parser.py From gmpe-smtk with GNU Affero General Public License v3.0 | 5 votes |
def _parse_time_history(self, ifile): """ Parses the time history from the file and returns a dictionary of time-series properties """ output = {} accel = np.genfromtxt(ifile, skip_header=1) output["Acceleration"] = convert_accel_units(accel, self.units) nvals, time_step = (getline(ifile, 1).rstrip("\n")).split() output["Time-step"] = float(time_step) output["Number Steps"] = int(nvals) output["Units"] = "cm/s/s" output["PGA"] = np.max(np.fabs(output["Acceleration"])) return output
Example #26
Source File: esm_database_parser.py From gmpe-smtk with GNU Affero General Public License v3.0 | 5 votes |
def _parse_time_history(self, ifile): """ Parses the time history """ # Build the metadata dictionary again metadata = _get_metadata_from_file(ifile) self.number_steps = _to_int(metadata["NDATA"]) self.time_step = _to_float(metadata["SAMPLING_INTERVAL_S"]) self.units = metadata["UNITS"] # Get acceleration data accel = np.genfromtxt(ifile, skip_header=64) if "DIS" in ifile: pga = None pgd = np.fabs(_to_float(metadata["PGD_" + metadata["UNITS"].upper()])) else: pga = np.fabs(_to_float( metadata["PGA_" + metadata["UNITS"].upper()])) pgd = None if "s^2" in self.units: self.units = self.units.replace("s^2", "s/s") output = { # Although the data will be converted to cm/s/s internally we can # do it here too "Acceleration": convert_accel_units(accel, self.units), "Time": get_time_vector(self.time_step, self.number_steps), "Time-step": self.time_step, "Number Steps": self.number_steps, "Units": self.units, "PGA": pga, "PGD": pgd } return output
Example #27
Source File: simple_flatfile_parser_sara.py From gmpe-smtk with GNU Affero General Public License v3.0 | 5 votes |
def _parse_time_history(self, ifile, units="cm/s/s"): """ Parses the time history from the file and returns a dictionary of time-series properties """ output = {} accel = np.genfromtxt(ifile, skip_header=1) output["Acceleration"] = convert_accel_units(accel, self.units) nvals, time_step = (getline(ifile, 1).rstrip("\n")).split() output["Time-step"] = float(time_step) output["Number Steps"] = int(nvals) output["Units"] = units output["PGA"] = np.max(np.fabs(output["Acceleration"])) return output
Example #28
Source File: luigi-targets.py From notes with Creative Commons Attribution 4.0 International | 5 votes |
def read(self): return numpy.genfromtxt(str(self.path), delimiter=',')
Example #29
Source File: common.py From typhon with MIT License | 5 votes |
def cmap_from_txt(file, name=None, N=-1, comments='%'): """Import colormap from txt file. Reads colormap data (RGB/RGBA) from an ASCII file. Values have to be given in [0, 1] range. Parameters: file (str): Path to txt file. name (str): Colormap name. Defaults to filename without extension. N (int): Number of colors. ``-1`` means all colors (i.e., the complete file). comments (str): Character to start comments with. Returns: LinearSegmentedColormap. """ # Extract colormap name from filename. if name is None: name = os.path.splitext(os.path.basename(file))[0] # Read binary file and determine number of colors rgb = np.genfromtxt(file, comments=comments) if N == -1: N = np.shape(rgb)[0] if np.min(rgb) < 0 or np.max(rgb) > 1: raise Exception('RGB value out of range: [0, 1].') # Create and register colormap... cmap = LinearSegmentedColormap.from_list(name, rgb, N=N) plt.register_cmap(cmap=cmap) # ... and the reversed colormap. cmap_r = LinearSegmentedColormap.from_list( name + '_r', np.flipud(rgb), N=N) plt.register_cmap(cmap=cmap_r) return cmap
Example #30
Source File: shifted_sequence_folders.py From SfmLearner-Pytorch with MIT License | 5 votes |
def crawl_folders(self, sequence_length): sequence_set = [] img_sequences = [] demi_length = (sequence_length-1)//2 for scene in self.scenes: imgs = sorted(scene.files('*.jpg')) if len(imgs) < sequence_length: continue shifts_file = scene/'shifts.json' if shifts_file.isfile(): with open(shifts_file, 'r') as f: shifts = json.load(f) else: prior_shifts = list(range(-demi_length, 0)) post_shifts = list(range(1, sequence_length - demi_length)) shifts = [[prior_shifts[:], post_shifts[:]] for i in imgs] img_sequences.append(imgs) sequence_index = len(img_sequences) - 1 intrinsics = np.genfromtxt(scene/'cam.txt').astype(np.float32).reshape((3, 3)) for i in range(demi_length, len(imgs)-demi_length): sample = {'intrinsics': intrinsics, 'tgt': i, 'prior_shifts': shifts[i][0], 'post_shifts': shifts[i][1], 'sequence_index': sequence_index} sequence_set.append(sample) random.shuffle(sequence_set) self.samples = sequence_set self.img_sequences = img_sequences