Python cv2.CV_LOAD_IMAGE_GRAYSCALE Examples
The following are 28
code examples of cv2.CV_LOAD_IMAGE_GRAYSCALE().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: NM.py From deep-landmark with BSD 3-Clause "New" or "Revised" License | 6 votes |
def E(): data = getDataFromTxt(TXT) error = np.zeros((len(data), 3)) for i in range(len(data)): imgPath, bbox, landmarkGt = data[i] landmarkGt = landmarkGt[2:, :] img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkP = NM(img, bbox) # real landmark landmarkP = bbox.reprojectLandmark(landmarkP) landmarkGt = bbox.reprojectLandmark(landmarkGt) error[i] = evaluateError(landmarkGt, landmarkP, bbox) return error
Example #2
Source File: EN.py From deep-landmark with BSD 3-Clause "New" or "Revised" License | 6 votes |
def E(): data = getDataFromTxt(TXT) error = np.zeros((len(data), 3)) for i in range(len(data)): imgPath, bbox, landmarkGt = data[i] landmarkGt = landmarkGt[:3, :] img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkP = EN(img, bbox) # real landmark landmarkP = bbox.reprojectLandmark(landmarkP) landmarkGt = bbox.reprojectLandmark(landmarkGt) error[i] = evaluateError(landmarkGt, landmarkP, bbox) return error
Example #3
Source File: envs.py From DHP with GNU General Public License v3.0 | 6 votes |
def load_heatmaps(self, load_dir): heatmaps = [] for step_i in range(self.step_total-self.step_total_offset): try: temp = cv2.imread( '{}/{}.jpg'.format( load_dir, step_i, ), cv2.CV_LOAD_IMAGE_GRAYSCALE, ) temp = cv2.resize(temp,(self.heatmap_width, self.heatmap_height)) temp = temp / 255.0 heatmaps += [temp] except Exception,e: raise Exception(Exception,":",e)
Example #4
Source File: FaceDetection.py From addons-source with GNU General Public License v2.0 | 6 votes |
def detect(self, obj, event): # First, reset image, in case of previous detections: active_handle = self.get_active('Media') media = self.dbstate.db.get_media_from_handle(active_handle) self.load_image(media) min_face_size = (50, 50) # FIXME: get from setting self.cv_image = cv2.LoadImage(self.full_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) o_width, o_height = self.cv_image.width, self.cv_image.height cv2.EqualizeHist(self.cv_image, self.cv_image) cascade = cv2.Load(HAARCASCADE_PATH) faces = cv2.HaarDetectObjects(self.cv_image, cascade, cv2.CreateMemStorage(0), 1.2, 2, cv2.CV_HAAR_DO_CANNY_PRUNING, min_face_size) references = self.find_references() rects = [] o_width, o_height = [float(t) for t in (self.cv_image.width, self.cv_image.height)] for ((x, y, width, height), neighbors) in faces: # percentages: rects.append((x / o_width, y / o_height, width / o_width, height / o_height)) self.draw_rectangles(rects, references)
Example #5
Source File: run.py From Emotion-recognition-and-prediction with Apache License 2.0 | 6 votes |
def format_image(image): if len(image.shape) > 2 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) faces = cascade_classifier.detectMultiScale( image, scaleFactor = 1.3 , minNeighbors = 5 ) if not len(faces) > 0: return None max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face face = max_area_face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] try: image = cv2.resize(image, (48,48), interpolation = cv2.INTER_CUBIC) / 255. except Exception: print("[+] Problem during resize") return None return image
Example #6
Source File: img_roi_builder.py From ethoscope with GNU General Public License v3.0 | 5 votes |
def __init__(self, mask_path): """ Class to build rois from greyscale image file. Each continuous region is used as a ROI. The greyscale value inside the ROI determines it's value. IMAGE HERE """ self._mask = cv2.imread(mask_path, IMG_READ_FLAG_GREY) super(ImgMaskROIBuilder,self).__init__()
Example #7
Source File: video_jit.py From xdog with MIT License | 5 votes |
def hatchBlend(image): xdogImage = xdog(image,sigma=1,k=200, gamma=0.5,epsilon=-0.5,phi=10) hatchTexture = cv2.imread('./imgs/hatch.jpg', cv2.CV_LOAD_IMAGE_GRAYSCALE) hatchTexture = cv2.resize(hatchTexture,(image.shape[1],image.shape[0])) alpha = 0.120 return (1-alpha)*xdogImage + alpha*hatchTexture # version of xdog inspired by article
Example #8
Source File: main.py From xdog with MIT License | 5 votes |
def hatchBlend(image): xdogImage = xdog(image,sigma=1,k=200, gamma=0.5,epsilon=-0.5,phi=10) hatchTexture = cv2.imread('./imgs/hatch.jpg', cv2.CV_LOAD_IMAGE_GRAYSCALE) hatchTexture = cv2.resize(hatchTexture,(image.shape[1],image.shape[0])) alpha = 0.120 return (1-alpha)*xdogImage + alpha*hatchTexture # version of xdog inspired by article
Example #9
Source File: cvs_to_numpy.py From emotion-recognition-neural-networks with MIT License | 5 votes |
def format_image(image): if len(image.shape) > 2 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) gray_border = np.zeros((150, 150), np.uint8) gray_border[:, :] = 200 gray_border[ int((150 / 2) - (SIZE_FACE / 2)): int((150 / 2) + (SIZE_FACE / 2)), int((150 / 2) - (SIZE_FACE / 2)): int((150 / 2) + (SIZE_FACE / 2)) ] = image image = gray_border faces = cascade_classifier.detectMultiScale( image, scaleFactor=1.3, minNeighbors=5 ) # None is we don't found an image if not len(faces) > 0: return None max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face # Chop image to face face = max_area_face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] # Resize image to network size try: image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation=cv2.INTER_CUBIC) / 255. except Exception: print("[+] Problem during resize") return None return image
Example #10
Source File: manual_poc.py From emotion-recognition-neural-networks with MIT License | 5 votes |
def format_image(image): if len(image.shape) > 2 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) faces = cv2.CascadeClassifier(CASC_PATH).detectMultiScale( image, scaleFactor=1.3, minNeighbors=5 ) # None is we don't found an image if not len(faces) > 0: return None max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face # Chop image to face face = max_area_face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] # Resize image to network size try: image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation=cv2.INTER_CUBIC) / 255. while True: cv2.imshow("frame", image) if cv2.waitKey(1) & 0xFF == ord('q'): break except Exception: print("[+] Problem during resize") return None # cv2.imshow("Lol", image) # cv2.waitKey(0) return image # Load Model
Example #11
Source File: poc.py From emotion-recognition-neural-networks with MIT License | 5 votes |
def format_image(image): if len(image.shape) > 2 and image.shape[2] == 3: image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) else: image = cv2.imdecode(image, cv2.CV_LOAD_IMAGE_GRAYSCALE) faces = cascade_classifier.detectMultiScale( image, scaleFactor=1.3, minNeighbors=5 ) # None is we don't found an image if not len(faces) > 0: return None max_area_face = faces[0] for face in faces: if face[2] * face[3] > max_area_face[2] * max_area_face[3]: max_area_face = face # Chop image to face face = max_area_face image = image[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] # Resize image to network size try: image = cv2.resize(image, (SIZE_FACE, SIZE_FACE), interpolation=cv2.INTER_CUBIC) / 255. except Exception: print("[+] Problem during resize") return None # cv2.imshow("Lol", image) # cv2.waitKey(0) return image # Load Model
Example #12
Source File: face_preprocess.py From MaskInsightface with Apache License 2.0 | 5 votes |
def read_image(img_path, **kwargs): mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode=='gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode=='rgb': #print('to rgb') img = img[...,::-1] if layout=='CHW': img = np.transpose(img, (2,0,1)) return img
Example #13
Source File: face_preprocess.py From MaskInsightface with Apache License 2.0 | 5 votes |
def read_image(img_path, **kwargs): mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode=='gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode=='rgb': #print('to rgb') img = img[...,::-1] if layout=='CHW': img = np.transpose(img, (2,0,1)) return img
Example #14
Source File: extractbgs.py From DeepAnpr with Apache License 2.0 | 5 votes |
def im_from_file(f): a = numpy.asarray(bytearray(f.read()), dtype=numpy.uint8) return cv2.imdecode(a, cv2.CV_LOAD_IMAGE_GRAYSCALE)
Example #15
Source File: gen.py From DeepAnpr with Apache License 2.0 | 5 votes |
def generate_bg(num_bg_images): found = False while not found: fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1)) bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255. if (bg.shape[1] >= OUTPUT_SHAPE[1] and bg.shape[0] >= OUTPUT_SHAPE[0]): found = True x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1]) y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0]) bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]] return bg
Example #16
Source File: WebCam.py From FakeBlock with MIT License | 5 votes |
def format_image(image_to_format): if len(image_to_format.shape) > 2 and image_to_format.shape[2] == 3: image_to_format = cv2.cvtColor(image_to_format, cv2.COLOR_BGR2GRAY) else: image_to_format = cv2.imdecode(image_to_format, cv2.CV_LOAD_IMAGE_GRAYSCALE) detected_faces = face_cascade.detectMultiScale( image_to_format, scaleFactor=1.3, minNeighbors=5, minSize = (48, 48), flags = cv2.CASCADE_SCALE_IMAGE ) # If we don't find a face, return None if not len(detected_faces) > 0: return None max_face = detected_faces[0] for face in detected_faces: if face[2] * face[3] > max_face[2] * max_face[3]: max_face = face # Chop image to face face = max_face image_to_format = image_to_format[face[1]:(face[1] + face[2]), face[0]:(face[0] + face[3])] # Resize image to fit network specs try: image_to_format = cv2.resize(image_to_format, (Constants.FACE_SIZE, Constants.FACE_SIZE), interpolation=cv2.INTER_CUBIC) / 255. except Exception: print("Image resize exception. Check input resolution inconsistency.") return None return image_to_format
Example #17
Source File: face_preprocess.py From bootcamp with Apache License 2.0 | 5 votes |
def read_image(img_path, **kwargs): mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode=='gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode=='rgb': #print('to rgb') img = img[...,::-1] if layout=='CHW': img = np.transpose(img, (2,0,1)) return img
Example #18
Source File: face_preprocess.py From insightface with MIT License | 5 votes |
def read_image(img_path, **kwargs): mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode=='gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode=='rgb': #print('to rgb') img = img[...,::-1] if layout=='CHW': img = np.transpose(img, (2,0,1)) return img
Example #19
Source File: face_preprocess.py From 1.FaceRecognition with MIT License | 5 votes |
def read_image(img_path, **kwargs): mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode=='gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode=='rgb': #print('to rgb') img = img[...,::-1] if layout=='CHW': img = np.transpose(img, (2,0,1)) return img
Example #20
Source File: conv_stego20.py From steganalysis_with_CNN_and_SRM with GNU General Public License v3.0 | 5 votes |
def read_pgm(filename): img1 = cv2.imread(filename, cv2.CV_LOAD_IMAGE_GRAYSCALE) h, w = img1.shape[:2] vis0 = np.zeros((h,w), np.float32) vis0[:h, :w] = img1 return vis0 #This method is used to read cover and stego images. #We consider that stego images can be steganographied with differents keys (in practice this seems to be inefficient...)
Example #21
Source File: ins_seg_dataset.py From rec-attend-public with MIT License | 5 votes |
def get_full_size_labels(self, img_ids, timespan=None): """Get full sized labels.""" if timespan is None: timespan = self.get_default_timespan() with h5py.File(self.h5_fname, 'r') as h5f: num_ex = len(img_ids) y_full = [] for kk, ii in enumerate(img_ids): key = self.get_str_id(ii) data_group = h5f[key] if 'label_segmentation_full_size' in data_group: y_gt_group = data_group['label_segmentation_full_size'] num_obj = len(y_gt_group.keys()) y_full_kk = None for jj in xrange(min(num_obj, timespan)): y_full_jj_str = y_gt_group['{:02d}'.format(jj)][:] y_full_jj = cv2.imdecode( y_full_jj_str, cv2.CV_LOAD_IMAGE_GRAYSCALE).astype('float32') if y_full_kk is None: y_full_kk = np.zeros( [timespan, y_full_jj.shape[0], y_full_jj.shape[1]]) y_full_kk[jj] = y_full_jj y_full.append(y_full_kk) else: y_full.append(np.zeros([timespan] + list(data_group['orig_size'][:]))) return y_full
Example #22
Source File: predict_phocs.py From phocnet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def main(img_dir, output_dir, pretrained_phocnet, deploy_proto, min_image_width_height, gpu_id): logging_format = '[%(asctime)-19s, %(name)s, %(levelname)s] %(message)s' logging.basicConfig(level=logging.INFO, format=logging_format) logger = logging.getLogger('Predict PHOCs') if gpu_id is None: caffe.set_mode_cpu() else: caffe.set_mode_gpu() caffe.set_device(gpu_id) logger.info('Loading PHOCNet...') phocnet = caffe.Net(deploy_proto, caffe.TEST, weights=pretrained_phocnet) # find all images in the supplied dir logger.info('Found %d word images to process', len(os.listdir(img_dir))) word_img_list = [cv2.imread(os.path.join(img_dir, filename), cv2.CV_LOAD_IMAGE_GRAYSCALE) for filename in sorted(os.listdir(img_dir)) if filename not in ['.', '..']] # push images through the PHOCNet logger.info('Predicting PHOCs...') predicted_phocs = net_output_for_word_image_list(phocnet=phocnet, word_img_list=word_img_list, min_img_width_height=min_image_width_height) # save everything logger.info('Saving...') np.save(os.path.join(output_dir, 'predicted_phocs.npy'), predicted_phocs) logger.info('Finished')
Example #23
Source File: word_container.py From phocnet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_word_image(self, gray_scale=True): col_type = None if gray_scale: col_type = cv2.CV_LOAD_IMAGE_GRAYSCALE else: col_type = cv2.CV_LOAD_IMAGE_COLOR # load the image ul = self.bounding_box['upperLeft'] wh = self.bounding_box['widthHeight'] img = cv2.imread(self.image_path, col_type) if not np.all(self.bounding_box['widthHeight'] == -1): img = img[ul[1]:ul[1]+wh[1], ul[0]:ul[0]+wh[0]] return img
Example #24
Source File: extractbgs.py From deep-anpr with MIT License | 5 votes |
def im_from_file(f): a = numpy.asarray(bytearray(f.read()), dtype=numpy.uint8) return cv2.imdecode(a, cv2.CV_LOAD_IMAGE_GRAYSCALE)
Example #25
Source File: gen.py From deep-anpr with MIT License | 5 votes |
def generate_bg(num_bg_images): found = False while not found: fname = "bgs/{:08d}.jpg".format(random.randint(0, num_bg_images - 1)) bg = cv2.imread(fname, cv2.CV_LOAD_IMAGE_GRAYSCALE) / 255. if (bg.shape[1] >= OUTPUT_SHAPE[1] and bg.shape[0] >= OUTPUT_SHAPE[0]): found = True x = random.randint(0, bg.shape[1] - OUTPUT_SHAPE[1]) y = random.randint(0, bg.shape[0] - OUTPUT_SHAPE[0]) bg = bg[y:y + OUTPUT_SHAPE[0], x:x + OUTPUT_SHAPE[1]] return bg
Example #26
Source File: test.py From deep-landmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def E(level=1): if level == 0: from common import level1 as P P = partial(P, FOnly=True) # high order function, here we only test LEVEL-1 F CNN elif level == 1: from common import level1 as P elif level == 2: from common import level2 as P else: from common import level3 as P data = getDataFromTxt(TXT) error = np.zeros((len(data), 5)) for i in range(len(data)): imgPath, bbox, landmarkGt = data[i] img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkP = P(img, bbox) # real landmark landmarkP = bbox.reprojectLandmark(landmarkP) landmarkGt = bbox.reprojectLandmark(landmarkGt) error[i] = evaluateError(landmarkGt, landmarkP, bbox) return error
Example #27
Source File: level2.py From deep-landmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate(ftxt, mode, argument=False): """ Generate Training Data for LEVEL-2 mode = train or test """ data = getDataFromTxt(ftxt) trainData = defaultdict(lambda: dict(patches=[], landmarks=[])) for (imgPath, bbox, landmarkGt) in data: img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkPs = randomShiftWithArgument(landmarkGt, 0.05) if not argument: landmarkPs = [landmarkPs[0]] for landmarkP in landmarkPs: for idx, name, padding in types: patch, patch_bbox = getPatch(img, bbox, landmarkP[idx], padding) patch = cv2.resize(patch, (15, 15)) patch = patch.reshape((1, 15, 15)) trainData[name]['patches'].append(patch) _ = patch_bbox.project(bbox.reproject(landmarkGt[idx])) trainData[name]['landmarks'].append(_) for idx, name, padding in types: logger('writing training data of %s'%name) patches = np.asarray(trainData[name]['patches']) landmarks = np.asarray(trainData[name]['landmarks']) patches = processImage(patches) shuffle_in_unison_scary(patches, landmarks) with h5py.File('train/2_%s/%s.h5'%(name, mode), 'w') as h5: h5['data'] = patches.astype(np.float32) h5['landmark'] = landmarks.astype(np.float32) with open('train/2_%s/%s.txt'%(name, mode), 'w') as fd: fd.write('train/2_%s/%s.h5'%(name, mode))
Example #28
Source File: level3.py From deep-landmark with BSD 3-Clause "New" or "Revised" License | 5 votes |
def generate(ftxt, mode, argument=False): """ Generate Training Data for LEVEL-3 mode = train or test """ data = getDataFromTxt(ftxt) trainData = defaultdict(lambda: dict(patches=[], landmarks=[])) for (imgPath, bbox, landmarkGt) in data: img = cv2.imread(imgPath, cv2.CV_LOAD_IMAGE_GRAYSCALE) assert(img is not None) logger("process %s" % imgPath) landmarkPs = randomShiftWithArgument(landmarkGt, 0.01) if not argument: landmarkPs = [landmarkPs[0]] for landmarkP in landmarkPs: for idx, name, padding in types: patch, patch_bbox = getPatch(img, bbox, landmarkP[idx], padding) patch = cv2.resize(patch, (15, 15)) patch = patch.reshape((1, 15, 15)) trainData[name]['patches'].append(patch) _ = patch_bbox.project(bbox.reproject(landmarkGt[idx])) trainData[name]['landmarks'].append(_) for idx, name, padding in types: logger('writing training data of %s'%name) patches = np.asarray(trainData[name]['patches']) landmarks = np.asarray(trainData[name]['landmarks']) patches = processImage(patches) shuffle_in_unison_scary(patches, landmarks) with h5py.File('train/3_%s/%s.h5'%(name, mode), 'w') as h5: h5['data'] = patches.astype(np.float32) h5['landmark'] = landmarks.astype(np.float32) with open('train/3_%s/%s.txt'%(name, mode), 'w') as fd: fd.write('train/3_%s/%s.h5'%(name, mode))