Python numpy.array_equal() Examples
The following are 30
code examples of numpy.array_equal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example #1
Source File: per_image_evaluation_test.py From object_detector_app with MIT License | 6 votes |
def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example #2
Source File: object_detection_evaluation_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_add_single_ground_truth_image_info(self): expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int) expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, self.od_eval.num_gt_instances_per_class)) self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, self.od_eval.num_gt_imgs_per_class)) groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"], groundtruth_boxes2)) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose( self.od_eval.groundtruth_is_difficult_list["img2"], groundtruth_is_difficult_list2)) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ "img1"], groundtruth_class_labels1))
Example #3
Source File: per_image_evaluation_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example #4
Source File: per_image_evaluation_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_compute_corloc_with_normal_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 1], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example #5
Source File: test_shci.py From pyscf with Apache License 2.0 | 6 votes |
def test_D2htoDinfh(self): SHCI = lambda: None SHCI.groupname = 'Dooh' #SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13]) SHCI.orbsym = numpy.array([ 15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16, 12, 13 ]) coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20) coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh( SHCI, 20, 20) self.assertTrue(numpy.array_equal(coeffs1, coeffs)) self.assertTrue(numpy.array_equal(nRows1, nRows)) self.assertTrue(numpy.array_equal(rowIndex1, rowIndex)) self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs)) self.assertTrue(numpy.array_equal(orbsym1, orbsym))
Example #6
Source File: prunable_nn_test.py From prunnable-layers-pytorch with GNU General Public License v3.0 | 6 votes |
def test_PLinearDropInputs_ShouldDropRightParams(self): dropped_index = 0 # assume input is 2x2x2, 2 layers of 2x2 input_shape = (2, 2, 2) module = pnn.PLinear(8, 10) old_num_features = module.in_features old_weight = module.weight.data.cpu().numpy() resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape)) module.drop_inputs(input_shape, dropped_index) new_shape = module.weight.size() # ensure that the chosen index is dropped expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape) output = module.weight.data.cpu().numpy() self.assertTrue(np.array_equal(output, expected_weight)) # ensure num features is reduced self.assertTrue(module.in_features, old_num_features-1)
Example #7
Source File: test_operator_gpu.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_residual_fused(): cell = mx.rnn.ResidualCell( mx.rnn.FusedRNNCell(50, num_layers=3, mode='lstm', prefix='rnn_', dropout=0.5)) inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)] outputs, _ = cell.unroll(2, inputs, merge_outputs=None) assert sorted(cell.params._params.keys()) == \ ['rnn_parameters'] args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50)) assert outs == [(10, 2, 50)] outputs = outputs.eval(ctx=mx.gpu(0), rnn_t0_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5, rnn_t1_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5, rnn_parameters=mx.nd.zeros((61200,), ctx=mx.gpu(0))) expected_outputs = np.ones((10, 2, 50))+5 assert np.array_equal(outputs[0].asnumpy(), expected_outputs)
Example #8
Source File: prunable_nn_test.py From prunnable-layers-pytorch with GNU General Public License v3.0 | 6 votes |
def test_PBatchNorm2dDropInputChannel_ShouldDropRightParams(self): dropped_index = 0 module = pnn.PBatchNorm2d(2) old_num_features = module.num_features old_bias = module.bias.data.cpu().numpy() old_weight = module.weight.data.cpu().numpy() module.drop_input_channel(dropped_index) # ensure that the chosen index is dropped expected_weight = np.delete(old_weight, dropped_index, 0) self.assertTrue(np.array_equal(module.weight.data.cpu().numpy(), expected_weight)) expected_bias = np.delete(old_bias, dropped_index, 0) self.assertTrue(np.array_equal(module.bias.data.cpu().numpy(), expected_bias)) # ensure num features is reduced self.assertTrue(module.num_features, old_num_features-1)
Example #9
Source File: df_jk.py From pyscf with Apache License 2.0 | 6 votes |
def _ewald_exxdiv_for_G0(cell, kpts, dms, vk, kpts_band=None): s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts) madelung = tools.pbc.madelung(cell, kpts) if kpts is None: for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif numpy.shape(kpts) == (3,): if kpts_band is None or is_zero(kpts_band-kpts): for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif kpts_band is None or numpy.array_equal(kpts, kpts_band): for k in range(len(kpts)): for i,dm in enumerate(dms): vk[i,k] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k])) else: for k, kpt in enumerate(kpts): for kp in member(kpt, kpts_band.reshape(-1,3)): for i,dm in enumerate(dms): vk[i,kp] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k]))
Example #10
Source File: test_gluon_rnn.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 6 votes |
def test_residual(): cell = gluon.rnn.ResidualCell(gluon.rnn.GRUCell(50, prefix='rnn_')) inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)] outputs, _ = cell.unroll(2, inputs) outputs = mx.sym.Group(outputs) assert sorted(cell.collect_params().keys()) == \ ['rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight'] # assert outputs.list_outputs() == \ # ['rnn_t0_out_plus_residual_output', 'rnn_t1_out_plus_residual_output'] args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50)) assert outs == [(10, 50), (10, 50)] outputs = outputs.eval(rnn_t0_data=mx.nd.ones((10, 50)), rnn_t1_data=mx.nd.ones((10, 50)), rnn_i2h_weight=mx.nd.zeros((150, 50)), rnn_i2h_bias=mx.nd.zeros((150,)), rnn_h2h_weight=mx.nd.zeros((150, 50)), rnn_h2h_bias=mx.nd.zeros((150,))) expected_outputs = np.ones((10, 50)) assert np.array_equal(outputs[0].asnumpy(), expected_outputs) assert np.array_equal(outputs[1].asnumpy(), expected_outputs)
Example #11
Source File: per_image_evaluation_test.py From object_detector_app with MIT License | 6 votes |
def test_compute_corloc_with_normal_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 1], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example #12
Source File: test_numpy_helper.py From pyscf with Apache License 2.0 | 6 votes |
def test_takebak_2d(self): b = numpy.arange(9.).reshape((3,3)) a = numpy.arange(49.).reshape(7,7) idx = numpy.array([3,0,5]) idy = numpy.array([5,4,1]) ref = a.copy() ref[idx[:,None],idy] += b lib.takebak_2d(a, b, idx, idy) self.assertTrue(numpy.array_equal(ref, a)) b = numpy.arange(9, dtype=numpy.int32).reshape((3,3)) a = numpy.arange(49, dtype=numpy.int32).reshape(7,7) ref = a.copy() ref[idx[:,None],idy] += b lib.takebak_2d(a, b, idx, idy) self.assertTrue(numpy.array_equal(ref, a))
Example #13
Source File: object_detection_evaluation_test.py From object_detector_app with MIT License | 6 votes |
def test_add_single_ground_truth_image_info(self): expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int) expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, self.od_eval.num_gt_instances_per_class)) self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, self.od_eval.num_gt_imgs_per_class)) groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"], groundtruth_boxes2)) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose( self.od_eval.groundtruth_is_difficult_list["img2"], groundtruth_is_difficult_list2)) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ "img1"], groundtruth_class_labels1))
Example #14
Source File: object_detection_evaluation_test.py From object_detector_app with MIT License | 6 votes |
def test_add_single_detected_image_info(self): expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], [np.array([0.9], dtype=float)]] expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], [np.array([0], dtype=bool)]] expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], dtype=int) for i in range(self.od_eval.num_class): for j in range(len(expected_scores_per_class[i])): self.assertTrue(np.allclose(expected_scores_per_class[i][j], self.od_eval.scores_per_class[i][j])) self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ j], self.od_eval.tp_fp_labels_per_class[i][j])) self.assertTrue(np.array_equal( expected_num_images_correctly_detected_per_class, self.od_eval.num_images_correctly_detected_per_class))
Example #15
Source File: object_detection_evaluation_test.py From DOTA_models with Apache License 2.0 | 6 votes |
def test_add_single_detected_image_info(self): expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], [np.array([0.9], dtype=float)]] expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], [np.array([0], dtype=bool)]] expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], dtype=int) for i in range(self.od_eval.num_class): for j in range(len(expected_scores_per_class[i])): self.assertTrue(np.allclose(expected_scores_per_class[i][j], self.od_eval.scores_per_class[i][j])) self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ j], self.od_eval.tp_fp_labels_per_class[i][j])) self.assertTrue(np.array_equal( expected_num_images_correctly_detected_per_class, self.od_eval.num_images_correctly_detected_per_class))
Example #16
Source File: data_processor_test.py From neural-pipeline with MIT License | 6 votes |
def test_train(self): model = SimpleModel().train() train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) self.assertTrue(model.training) res = dp.predict({'data': torch.rand(1, 3)}, is_train=True) self.assertTrue(model.training) self.assertTrue(res.requires_grad) self.assertIsNone(res.grad) with self.assertRaises(NotImplementedError): dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True) loss = SimpleLoss() train_config = TrainConfig(model, [], loss, torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(train_config=train_config) res = dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True) self.assertTrue(model.training) self.assertTrue(loss.module.requires_grad) self.assertIsNotNone(loss.module.grad) self.assertTrue(np.array_equal(res, loss.res.data.numpy()))
Example #17
Source File: chunkUtil.py From hsds with Apache License 2.0 | 6 votes |
def chunkWriteSelection(chunk_arr=None, slices=None, data=None): log.info("chunkWriteSelection") dims = chunk_arr.shape rank = len(dims) if rank == 0: msg = "No dimension passed to chunkReadSelection" raise ValueError(msg) if len(slices) != rank: msg = "Selection rank does not match dataset rank" raise ValueError(msg) if len(data.shape) != rank: msg = "Input arr does not match dataset rank" raise ValueError(msg) updated = False # check if the new data modifies the array or not if not np.array_equal(chunk_arr[slices], data): # update chunk array chunk_arr[slices] = data updated = True return updated
Example #18
Source File: test_exp_replay.py From reinforcement_learning with MIT License | 6 votes |
def test3(self): exprep = exp_replay.ExpReplay(mem_size=100, state_size=[2,2], kth=4) for i in xrange(120): exprep.add_step(Step(cur_step=[[i,i],[i,i]], action=0, next_step=[[i+1,i+1],[i+1,i+1]], reward=0, done=False)) self.assertEqual(len(exprep.mem), 100) self.assertEqual(exprep.mem[-1:][0].cur_step, [[119,119],[119,119]]) last_state = exprep.get_last_state() self.assertEqual(np.shape(last_state),(2,2,4)) self.assertTrue(np.array_equal(last_state[:,:,0], [[116,116],[116,116]])) self.assertTrue(np.array_equal(last_state[:,:,1], [[117,117],[117,117]])) self.assertTrue(np.array_equal(last_state[:,:,2], [[118,118],[118,118]])) self.assertTrue(np.array_equal(last_state[:,:,3], [[119,119],[119,119]])) sample = exprep.sample(5) self.assertEqual(len(sample), 5) self.assertEqual(np.shape(sample[0].cur_step), (2,2,4)) self.assertEqual(np.shape(sample[0].next_step), (2,2,4))
Example #19
Source File: test_molecule.py From QCElemental with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_water_minima_fragment(): mol = water_dimer_minima.copy() frag_0 = mol.get_fragment(0, orient=True) frag_1 = mol.get_fragment(1, orient=True) assert frag_0.get_hash() == "5f31757232a9a594c46073082534ca8a6806d367" assert frag_1.get_hash() == "bdc1f75bd1b7b999ff24783d7c1673452b91beb9" frag_0_1 = mol.get_fragment(0, 1) frag_1_0 = mol.get_fragment(1, 0) assert np.array_equal(mol.symbols[:3], frag_0.symbols) assert np.allclose(mol.masses[:3], frag_0.masses) assert np.array_equal(mol.symbols, frag_0_1.symbols) assert np.allclose(mol.geometry, frag_0_1.geometry) assert np.array_equal(np.hstack((mol.symbols[3:], mol.symbols[:3])), frag_1_0.symbols) assert np.allclose(np.hstack((mol.masses[3:], mol.masses[:3])), frag_1_0.masses)
Example #20
Source File: test_shci.py From pyscf with Apache License 2.0 | 6 votes |
def test_D2htoDinfh(self): SHCI = lambda: None SHCI.groupname = 'Dooh' #SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13]) SHCI.orbsym = numpy.array([ 15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16, 12, 13 ]) coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20) coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh( SHCI, 20, 20) self.assertTrue(numpy.array_equal(coeffs1, coeffs)) self.assertTrue(numpy.array_equal(nRows1, nRows)) self.assertTrue(numpy.array_equal(rowIndex1, rowIndex)) self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs)) self.assertTrue(numpy.array_equal(orbsym1, orbsym))
Example #21
Source File: prunable_nn_test.py From prunnable-layers-pytorch with GNU General Public License v3.0 | 6 votes |
def test_pruneFeatureMap_ShouldPruneRightParams(self): dropped_index = 0 output = self.module(self.input) torch.autograd.backward(output, self.upstream_gradient) old_weight_size = self.module.weight.size() old_bias_size = self.module.bias.size() old_out_channels = self.module.out_channels old_weight_values = self.module.weight.data.cpu().numpy() # ensure that the chosen index is dropped self.module.prune_feature_map(dropped_index) # check bias size self.assertEqual(self.module.bias.size()[0], (old_bias_size[0]-1)) # check output channels self.assertEqual(self.module.out_channels, old_out_channels-1) _, *other_old_weight_sizes = old_weight_size # check weight size self.assertEqual(self.module.weight.size(), (old_weight_size[0]-1, *other_old_weight_sizes)) # check weight value expected = np.delete(old_weight_values, dropped_index , 0) self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected))
Example #22
Source File: test_exp_replay.py From reinforcement_learning with MIT License | 5 votes |
def test4(self): # -1 for sending raw state exprep = exp_replay.ExpReplay(mem_size=100, state_size=[4], kth=-1) for i in xrange(120): exprep.add_step(Step(cur_step=[i,i,i,i], action=0, next_step=[i+1,i+1,i+1,i+1], reward=0, done=False)) last_state = exprep.get_last_state() self.assertEqual(np.shape(last_state),(4,)) self.assertTrue(np.array_equal(last_state, [119,119,119,119])) sample = exprep.sample(5) self.assertEqual(len(sample), 5) self.assertEqual(np.shape(sample[0].cur_step), (4,))
Example #23
Source File: kmeans.py From hadrian with Apache License 2.0 | 5 votes |
def newCluster(self): """Pick a random point from the dataset and ensure that it is different from all other cluster centers. :rtype: 1-d Numpy array :return: a *copy* of a random point, guaranteed to be different from all other clusters. """ newCluster = self.randomPoint() while any(numpy.array_equal(x, newCluster) for x in self.clusters): newCluster = self.randomPoint() return newCluster
Example #24
Source File: test_rounding.py From Hexy with MIT License | 5 votes |
def test_cube_round(): test_coords = np.array([ [1.1, -1.4, 0.3], [3.3, 2.3, -5.4], ]); expected_coords = np.array([ [1, -1, 0], [3, 2, -5], ]); assert(np.array_equal(hx.cube_round(test_coords), expected_coords))
Example #25
Source File: test_conversions.py From Hexy with MIT License | 5 votes |
def test_the_converted_coords_and_dataset_coords_retrieve_the_same_data(): axial_coords = hx.cube_to_axial(coords) cube_coords = hx.axial_to_cube(axial_coords) pixel_coords = hx.cube_to_pixel(cube_coords, radius) pixel_to_cube_coords = hx.pixel_to_cube(pixel_coords, radius) pixel_to_cube_to_axial_coords = hx.cube_to_axial(pixel_to_cube_coords) # check that we can correctly retrieve hexes after conversions hm[axial_coords] = coords retrieved = hm[pixel_to_cube_to_axial_coords] assert np.array_equal(retrieved, coords)
Example #26
Source File: test_conversions.py From Hexy with MIT License | 5 votes |
def test_cube_to_pixel_conversion(): axial_coords = hx.cube_to_axial(coords) cube_coords = hx.axial_to_cube(axial_coords) pixel_coords = hx.cube_to_pixel(cube_coords, radius) pixel_to_cube_coords = hx.pixel_to_cube(pixel_coords, radius) pixel_to_cube_to_axial_coords = hx.cube_to_axial(pixel_to_cube_coords) assert np.array_equal(cube_coords, pixel_to_cube_coords)
Example #27
Source File: test_conversions.py From Hexy with MIT License | 5 votes |
def test_axial_to_pixel_conversion(): axial_coords = hx.cube_to_axial(coords) pixel_coords = hx.axial_to_pixel(axial_coords, radius) pixel_to_axial_coords = hx.pixel_to_axial(pixel_coords, radius) assert np.array_equal(axial_coords, pixel_to_axial_coords)
Example #28
Source File: test_hex_line.py From Hexy with MIT License | 5 votes |
def test_get_hex_line(): expected = [ [-3, 3, 0], [-2, 2, 0], [-1, 2, -1], [0, 2, -2], [1, 1, -2], ] start = np.array([-3, 3, 0]) end = np.array([1, 1, -2]) print(hx.get_hex_line(start, end)) print(expected); assert(np.array_equal( hx.get_hex_line(start, end), expected));
Example #29
Source File: test_rounding.py From Hexy with MIT License | 5 votes |
def test_axial_round(): test_coords = np.array([ [1.1, -1.4], [3.3, 2.3], ]); expected_coords = np.array([ [1, -1], [3, 2], ]); assert(np.array_equal(hx.axial_round(test_coords), expected_coords))
Example #30
Source File: test_quaternion.py From quadcopter-simulation with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_as_v_thta(self): x = [1.0,0.0,0.0] q = Quaternion.from_v_theta(x, np.pi/2) expected_v = np.array(x) expected_theta = np.pi/2 actual_v, actual_theta = q.as_v_theta() print actual_v, actual_theta, expected_v self.assertTrue(np.array_equal(expected_v, actual_v)) self.assertEqual(expected_theta, actual_theta)