Python utils.load_model() Examples
The following are 17
code examples of utils.load_model().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
utils
, or try the search function
.
Example #1
Source File: predict.py From Wave-U-Net-Pytorch with MIT License | 6 votes |
def main(args): # MODEL num_features = [args.features*i for i in range(1, args.levels+1)] if args.feature_growth == "add" else \ [args.features*2**i for i in range(0, args.levels)] target_outputs = int(args.output_size * args.sr) model = Waveunet(args.channels, num_features, args.channels, args.instruments, kernel_size=args.kernel_size, target_output_size=target_outputs, depth=args.depth, strides=args.strides, conv_type=args.conv_type, res=args.res, separate=args.separate) if args.cuda: model = utils.DataParallel(model) print("move model to gpu") model.cuda() print("Loading model from checkpoint " + str(args.load_model)) state = utils.load_model(model, None, args.load_model) print('Step', state['step']) preds = predict_song(args, args.input, model) output_folder = os.path.dirname(args.input) if args.output is None else args.output for inst in preds.keys(): utils.write_wav(os.path.join(output_folder, os.path.basename(args.input) + "_" + inst + ".wav"), preds[inst], args.sr)
Example #2
Source File: visualize.py From ba-dls-deepspeech with Apache License 2.0 | 6 votes |
def main(): parser = argparse.ArgumentParser() parser.add_argument('test_file', type=str, help='Path to an audio file') parser.add_argument('train_desc_file', type=str, help='Path to the training JSON-line file. This will ' 'be used to extract feature means/variance') parser.add_argument('load_dir', type=str, help='Directory where a trained model is stored.') parser.add_argument('--weights_file', type=str, default=None, help='Path to a model weights file') args = parser.parse_args() print ("Loading model") model = load_model(args.load_dir, args.weights_file) visualize(model, args.test_file, args.train_desc_file)
Example #3
Source File: interpolation_in_text.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 6 votes |
def infer(data_filepath='data/flowers.hdf5', z_dim=128, out_dir='gan', n_steps=10): G = load_model(out_dir) val_data = get_data(data_filepath, 'train') val_data = next(iterate_minibatches(val_data, 2)) emb_source, emb_target = val_data[1] txts = val_data[2] z = np.random.uniform(-1, 1, size=(1, z_dim)) G.trainable = False for i in range(n_steps+1): p = i/float(n_steps) emb = emb_source * (1-p) + emb_target * p emb = emb[None, :] fake_image = G.predict([z, emb])[0] img = ((fake_image + 1)*0.5) plt.imsave("{}/fake_text_interpolation_i{}".format(out_dir, i), img) print(i, str(txts[int(round(p))]).strip(), file=open("{}/fake_text_interpolation.txt".format(out_dir), "a"))
Example #4
Source File: inference.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 6 votes |
def infer(data_filepath='data/flowers.hdf5', z_dim=128, out_dir='gan', n_samples=5): G = load_model(out_dir) val_data = get_data(data_filepath, 'train') val_data = next(iterate_minibatches(val_data, n_samples)) emb, txts = val_data[1], val_data[2] # sample z vector for inference z = np.random.uniform(-1, 1, size=(n_samples, z_dim)) G.trainable = False fake_images = G.predict([z, emb]) for i in range(n_samples): img = ((fake_images[i] + 1)*0.5) plt.imsave("{}/fake_{}".format(out_dir, i), img) print(i, str(txts[i]).strip(), file=open("{}/fake_text.txt".format(out_dir), "a"))
Example #5
Source File: test.py From ba-dls-deepspeech with Apache License 2.0 | 6 votes |
def main(test_desc_file, train_desc_file, load_dir): # Prepare the data generator datagen = DataGenerator() # Load the JSON file that contains the dataset datagen.load_test_data(test_desc_file) datagen.load_train_data(train_desc_file) # Use a few samples from the dataset, to calculate the means and variance # of the features, so that we can center our inputs to the network datagen.fit_train(100) # Compile a Recurrent Network with 1 1D convolution layer, GRU units # and 1 fully connected layer model = load_model(load_dir) # Compile the testing function test_fn = compile_test_fn(model) # Test the model test_loss = test(model, test_fn, datagen) print ("Test loss: {}".format(test_loss))
Example #6
Source File: acc_conv.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def main(): model = utils.load_model(args) new_model = conv_vh_decomposition(model, args) new_model.save(args.save_model)
Example #7
Source File: acc_fc.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def main(): model = utils.load_model(args) new_model = fc_decomposition(model, args) new_model.save(args.save_model)
Example #8
Source File: acc_fc.py From SNIPER-mxnet with Apache License 2.0 | 5 votes |
def main(): model = utils.load_model(args) new_model = fc_decomposition(model, args) new_model.save(args.save_model)
Example #9
Source File: hooks.py From pycodesuggest with MIT License | 5 votes |
def __call__(self, sess, epoch, iteration, model, loss, processed): if epoch == self.at_epoch: print("Loading model...") model = load_model(sess, self.path + "latest/")
Example #10
Source File: train.py From glad with BSD 3-Clause "New" or "Revised" License | 5 votes |
def run(args): pprint(args) logging.basicConfig(level=logging.INFO) np.random.seed(args.seed) torch.manual_seed(args.seed) seed(args.seed) dataset, ontology, vocab, Eword = load_dataset() model = load_model(args.model, args, ontology, vocab) model.save_config() model.load_emb(Eword) model = model.to(model.device) if not args.test: logging.info('Starting train') model.run_train(dataset['train'], dataset['dev'], args) if args.resume: model.load_best_save(directory=args.resume) else: model.load_best_save(directory=args.dout) model = model.to(model.device) logging.info('Running dev evaluation') dev_out = model.run_eval(dataset['dev'], args) pprint(dev_out)
Example #11
Source File: models.py From punctuator with MIT License | 5 votes |
def load(self, model): self.t_lstm = load_model(model["t_lstm_file_name"]) self.in_vocabulary = self.t_lstm.in_vocabulary super(TA_LSTM, self).load(model)
Example #12
Source File: acc_conv.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def main(): model = utils.load_model(args) new_model = conv_vh_decomposition(model, args) new_model.save(args.save_model)
Example #13
Source File: arithmetic_in_text.py From Hands-On-Generative-Adversarial-Networks-with-Keras with MIT License | 4 votes |
def infer(data_filepath='data/flowers.hdf5', z_dim=128, out_dir='gan', n_steps=10): G = load_model(out_dir) val_data = get_data(data_filepath, 'train') val_data = next(iterate_minibatches(val_data, 2)) emb_a, emb_b = val_data[1] txts = val_data[2] # add batch dimension emb_a, emb_b = emb_a[None, :], emb_b[None, :] # sample z vector for inference z = np.random.uniform(-1, 1, size=(1, z_dim)) G.trainable = False # predict using embeddings a and b fake_image_a = G.predict([z, emb_a])[0] fake_image_b = G.predict([z, emb_b])[0] # add and subtract emb_add = (emb_a + emb_b) emb_a_sub_b = (emb_a - emb_b) emb_b_sub_a = (emb_b - emb_a) # generate images fake_a = G.predict([z, emb_a])[0] fake_b = G.predict([z, emb_b])[0] fake_add = G.predict([z, emb_add])[0] fake_a_sub_b = G.predict([z, emb_a_sub_b])[0] fake_b_sub_a = G.predict([z, emb_b_sub_a])[0] fake_a = ((fake_a + 1)*0.5) fake_b = ((fake_b + 1)*0.5) fake_add = ((fake_add + 1)*0.5) fake_a_sub_b = ((fake_a_sub_b + 1)*0.5) fake_b_sub_a = ((fake_b_sub_a + 1)*0.5) plt.imsave("{}/fake_text_arithmetic_a".format(out_dir), fake_a) plt.imsave("{}/fake_text_arithmetic_b".format(out_dir), fake_b) plt.imsave("{}/fake_text_arithmetic_add".format(out_dir), fake_add) plt.imsave("{}/fake_text_arithmetic_a_sub_b".format(out_dir), fake_a_sub_b) plt.imsave("{}/fake_text_arithmetic_b_sub_a".format(out_dir), fake_b_sub_a) print(str(txts[0]), str(txts[1]), file=open("{}/fake_text_arithmetic.txt".format(out_dir), "a"))
Example #14
Source File: main.py From Bert-BiLSTM-CRF-pytorch with MIT License | 4 votes |
def train(**kwargs): config = Config() config.update(**kwargs) print('当前设置为:\n', config) if config.use_cuda: torch.cuda.set_device(config.gpu) print('loading corpus') vocab = load_vocab(config.vocab) label_dic = load_vocab(config.label_file) tagset_size = len(label_dic) train_data = read_corpus(config.train_file, max_length=config.max_length, label_dic=label_dic, vocab=vocab) dev_data = read_corpus(config.dev_file, max_length=config.max_length, label_dic=label_dic, vocab=vocab) train_ids = torch.LongTensor([temp.input_id for temp in train_data]) train_masks = torch.LongTensor([temp.input_mask for temp in train_data]) train_tags = torch.LongTensor([temp.label_id for temp in train_data]) train_dataset = TensorDataset(train_ids, train_masks, train_tags) train_loader = DataLoader(train_dataset, shuffle=True, batch_size=config.batch_size) dev_ids = torch.LongTensor([temp.input_id for temp in dev_data]) dev_masks = torch.LongTensor([temp.input_mask for temp in dev_data]) dev_tags = torch.LongTensor([temp.label_id for temp in dev_data]) dev_dataset = TensorDataset(dev_ids, dev_masks, dev_tags) dev_loader = DataLoader(dev_dataset, shuffle=True, batch_size=config.batch_size) model = BERT_LSTM_CRF(config.bert_path, tagset_size, config.bert_embedding, config.rnn_hidden, config.rnn_layer, dropout_ratio=config.dropout_ratio, dropout1=config.dropout1, use_cuda=config.use_cuda) if config.load_model: assert config.load_path is not None model = load_model(model, name=config.load_path) if config.use_cuda: model.cuda() model.train() optimizer = getattr(optim, config.optim) optimizer = optimizer(model.parameters(), lr=config.lr, weight_decay=config.weight_decay) eval_loss = 10000 for epoch in range(config.base_epoch): step = 0 for i, batch in enumerate(train_loader): step += 1 model.zero_grad() inputs, masks, tags = batch inputs, masks, tags = Variable(inputs), Variable(masks), Variable(tags) if config.use_cuda: inputs, masks, tags = inputs.cuda(), masks.cuda(), tags.cuda() feats = model(inputs, masks) loss = model.loss(feats, masks,tags) loss.backward() optimizer.step() if step % 50 == 0: print('step: {} | epoch: {}| loss: {}'.format(step, epoch, loss.item())) loss_temp = dev(model, dev_loader, epoch, config) if loss_temp < eval_loss: save_model(model,epoch)
Example #15
Source File: visualize.py From FactorNet with MIT License | 4 votes |
def main(): """ The main executable function """ parser = make_argument_parser() args = parser.parse_args() input_dir = args.inputdir model_dir = args.modeldir bed_file = args.bed chrom = args.chrom if args.outputdir is None: clobber = True output_dir = args.outputdirc else: clobber = False output_dir = args.outputdir try: # adapted from dreme.py by T. Bailey os.makedirs(output_dir) except OSError as exc: if exc.errno == errno.EEXIST: if not clobber: print >> sys.stderr, ('output directory (%s) already exists ' 'but you specified not to clobber it') % output_dir sys.exit(1) else: print >> sys.stderr, ('output directory (%s) already exists ' 'so it will be clobbered') % output_dir print 'Loading genome' genome = utils.load_genome() print 'Loading model' model_tfs, model_bigwig_names, features, model = utils.load_model(model_dir) L = model.input_shape[0][1] utils.L = L use_meta = 'meta' in features use_gencode = 'gencode' in features print 'Loading BED data' is_sorted = False bigwig_names, meta_names, datagen_bed, nonblacklist_bools = utils.load_beddata(genome, bed_file, use_meta, use_gencode, input_dir, is_sorted, chrom) assert bigwig_names == model_bigwig_names if use_meta: model_meta_file = model_dir + '/meta.txt' assert os.path.isfile(model_meta_file) model_meta_names = np.loadtxt(model_meta_file, dtype=str) if len(model_meta_names.shape) == 0: model_meta_names = [str(model_meta_names)] else: model_meta_names = list(model_meta_names) assert meta_names == model_meta_names output_results(bigwig_names, datagen_bed, model, output_dir)
Example #16
Source File: predict.py From FactorNet with MIT License | 4 votes |
def main(): """ The main executable function """ parser = make_argument_parser() args = parser.parse_args() input_dir = args.inputdir model_dir = args.modeldir tf = args.factor bed_file = args.bed output_file = args.outputfile print 'Loading genome' genome = utils.load_genome() print 'Loading model' model_tfs, model_bigwig_names, features, model = utils.load_model(model_dir) L = model.input_shape[0][1] utils.L = L assert tf in model_tfs assert 'bigwig' in features use_meta = 'meta' in features use_gencode = 'gencode' in features print 'Loading test data' is_sorted = True bigwig_names, meta_names, datagen_bed, nonblacklist_bools = utils.load_beddata(genome, bed_file, use_meta, use_gencode, input_dir, is_sorted) assert bigwig_names == model_bigwig_names if use_meta: model_meta_file = model_dir + '/meta.txt' assert os.path.isfile(model_meta_file) model_meta_names = np.loadtxt(model_meta_file, dtype=str) if len(model_meta_names.shape) == 0: model_meta_names = [str(model_meta_names)] else: model_meta_names = list(model_meta_names) assert meta_names == model_meta_names print 'Generating predictions' model_tf_index = model_tfs.index(tf) model_predicts = model.predict_generator(datagen_bed, val_samples=len(datagen_bed), pickle_safe=True) if len(model_tfs) > 1: model_tf_predicts = model_predicts[:, model_tf_index] else: model_tf_predicts = model_predicts final_scores = np.zeros(len(nonblacklist_bools)) final_scores[nonblacklist_bools] = model_tf_predicts print 'Saving predictions' df = pandas.read_csv(bed_file, sep='\t', header=None) df[3] = final_scores df.to_csv(output_file, sep='\t', compression='gzip', float_format='%.3e', header=False, index=False)
Example #17
Source File: trainer.py From punctuator with MIT License | 4 votes |
def _train(net, training_data, validation_data, model_name, learning_rate, max_epochs, min_improvement): min_learning_rate = 1e-6 best_validation_ppl = np.inf divide = False for epoch in range(1, max_epochs+1): epoch_start = time() print "\n======= EPOCH %s =======" % epoch print "\tLearning rate is %s" % learning_rate train_ppl = _process_corpus(net, training_data, mode='train', learning_rate=learning_rate) print "\tTrain PPL is %.3f" % train_ppl validation_ppl = _process_corpus(net, validation_data, mode='test') print "\tValidation PPL is %.3f" % validation_ppl print "\tTime taken: %ds" % (time() - epoch_start) if np.log(validation_ppl) * min_improvement > np.log(best_validation_ppl): # Mikolovs recipe if not divide: divide = True print "\tStarting to reduce the learning rate..." if validation_ppl > best_validation_ppl: print "\tLoading best model." net = utils.load_model("../out/" + model_name) else: if validation_ppl < best_validation_ppl: print "\tSaving model." net.save("../out/" + model_name, final=True) break else: print "\tNew best model! Saving..." best_validation_ppl = validation_ppl final = learning_rate / 2. < min_learning_rate or epoch == max_epochs net.save("../out/" + model_name, final) if divide: learning_rate /= 2. if learning_rate < min_learning_rate: break print "-"*30 print "Finished training." print "Best validation PPL is %.3f\n\n" % best_validation_ppl