Python six.iterkeys() Examples
The following are 30
code examples of six.iterkeys().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
six
, or try the search function
.
Example #1
Source File: mock.py From avocado-vt with GNU General Public License v2.0 | 6 votes |
def match(self, *args, **dargs): if len(args) != len(self.args) or len(dargs) != len(self.dargs): return False for i, expected_arg in enumerate(self.args): if not expected_arg.is_satisfied_by(args[i]): return False # check for incorrect dargs for key, value in six.iteritems(dargs): if key not in self.dargs: return False if not self.dargs[key].is_satisfied_by(value): return False # check for missing dargs for key in six.iterkeys(self.dargs): if key not in dargs: return False return True
Example #2
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def image_dimensions(images): ''' sub.image_dimensions is a tuple of the default size of an anatomical image for the given subject. ''' if images is None or len(images) == 0: return None if pimms.is_lazy_map(images): # look for an image that isn't lazy... key = next((k for k in images.iterkeys() if not images.is_lazy(k)), None) if key is None: key = next(images.iterkeys(), None) else: key = next(images.iterkeys(), None) img = images[key] if img is None: return None if is_image(img): img = img.dataobj return np.asarray(img).shape
Example #3
Source File: core.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def images_from_filemap(fmap): ''' images_from_filemap(fmap) yields a persistent map of MRImages tracked by the given subject with the given name and path; in freesurfer subjects these are renamed and converted from their typical freesurfer filenames (such as 'ribbon') to forms that conform to the neuropythy naming conventions (such as 'gray_mask'). To access data by their original names, use the filemap. ''' imgmap = fmap.data_tree.image def img_loader(k): return lambda:imgmap[k] imgs = {k:img_loader(k) for k in six.iterkeys(imgmap)} def _make_mask(val, eq=True): rib = imgmap['ribbon'] img = np.asarray(rib.dataobj) arr = (img == val) if eq else (img != val) arr.setflags(write=False) return type(rib)(arr, rib.affine, rib.header) imgs['lh_gray_mask'] = lambda:_make_mask(3) imgs['lh_white_mask'] = lambda:_make_mask(2) imgs['rh_gray_mask'] = lambda:_make_mask(42) imgs['rh_white_mask'] = lambda:_make_mask(41) imgs['brain_mask'] = lambda:_make_mask(0, False) # merge in with the typical images return pimms.merge(fmap.data_tree.image, pimms.lazy_map(imgs))
Example #4
Source File: test_services.py From django-service-objects with MIT License | 6 votes |
def test_extra_fields(self): class FooModelService(ModelService): two = forms.CharField() class Meta: model = FooModel fields = '__all__' def process(self): pass f = FooModelService() field_names = list(six.iterkeys(f.fields)) self.assertEqual(2, len(field_names)) self.assertEqual('one', field_names[0]) self.assertEqual('two', field_names[1])
Example #5
Source File: image_batches.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __str__(self): """Returns human readable representation, which is useful for debugging.""" buf = StringIO() for batch_idx, (batch_id, batch_val) in enumerate(iteritems(self.data)): if batch_idx >= TO_STR_MAX_BATCHES: buf.write(u'...\n') break buf.write(u'BATCH "{0}"\n'.format(batch_id)) for k, v in iteritems(batch_val): if k != 'images': buf.write(u' {0}: {1}\n'.format(k, v)) for img_idx, img_id in enumerate(iterkeys(batch_val['images'])): if img_idx >= TO_STR_MAX_IMAGES_PER_BATCH: buf.write(u' ...') break buf.write(u' IMAGE "{0}" -- {1}\n'.format(img_id, batch_val['images'][img_id])) buf.write(u'\n') return buf.getvalue()
Example #6
Source File: retinotopy.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def basic_retinotopy_data(hemi, retino_type): ''' basic_retinotopy_data(hemi, t) yields a numpy array of data for the given cortex object hemi and retinotopy type t; it does this by looking at the properties in hemi and picking out any combination that is commonly used to denote empirical retinotopy data. These common names are stored in _predicted_retintopy_names, in order of preference, which may be modified. The argument t should be one of 'polar_angle', 'eccentricity', 'visual_area', or 'weight'. Unlike the related functions empirical_retinotopy_data and predicted_retinotopy_data, this function calls both of these (predicted first then empirical) in the case that it does not find a valid property. ''' dat = _retinotopy_names[retino_type.lower()] val = next((hemi.prop(s) for s in six.iterkeys(hemi.properties) if s.lower() in dat), None) if val is None and retino_type.lower() != 'weight': val = predicted_retinotopy_data(hemi, retino_type) if val is None and retino_type.lower() != 'visual_area': val = empirical_retinotopy_data(hemi, retino_type) return val
Example #7
Source File: base.py From designate with Apache License 2.0 | 6 votes |
def __setattr__(self, name, value): """Enforces all object attributes are private or well defined""" if not (name[0:5] == '_obj_' or name[0:7] == '_change' or name == '_context' or name in list(six.iterkeys(self.fields)) or name == 'FIELDS' or name == 'VERSION' or name == 'fields'): raise AttributeError( "Designate object '%(type)s' has no" "attribute '%(name)s'" % { 'type': self.obj_name(), 'name': name, }) super(DesignateObject, self).__setattr__(name, value)
Example #8
Source File: gradients_impl.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _MultiDeviceAddN(tensor_list): """Adds tensors from potentially multiple devices.""" # Basic function structure comes from control_flow_ops.group(). # Sort tensors according to their devices. tensors_on_device = collections.defaultdict(lambda: []) for tensor in tensor_list: tensors_on_device[tensor.device].append(tensor) # For each device, add the tensors on that device first. # Then gather the partial sums from multiple devices. # TODO(sjhwang): Create hierarchical aggregation tree as pbar's suggestion. # E.g., aggregate per GPU, then per task, and so on. summands = [] def DeviceKey(dev): return "" if dev is None else dev for dev in sorted(six.iterkeys(tensors_on_device), key=DeviceKey): tensors = tensors_on_device[dev] with ops.colocate_with(tensors[0].op, ignore_existing=True): summands.append(math_ops.add_n(tensors)) return math_ops.add_n(summands)
Example #9
Source File: hcp.py From neuropythy with GNU Affero General Public License v3.0 | 6 votes |
def subjects(_subjects): ''' hcp.subjects is a lazy persistent map of all the subjects that are part of the HCP_1200 dataset. Subjects with valid retinotopic mapping data (assuming that the ny.data['hcp_retinotopy'] dataset has been initialized) include retinotopic mapping data as part of their property data. ''' try: from neuropythy import data dset = data['hcp_retinotopy'] subs = dset.subjects except Exception: return _subjects # okay, so far so good; let's setup the subject updating function: sids = set(list(_subjects.keys())) def _add_retino(sid): if sid in subs: return subs[sid] else: return _subjects[sid] return pimms.lazy_map({sid: curry(_add_retino, sid) for sid in six.iterkeys(_subjects)})
Example #10
Source File: data.py From shopping-classification with Apache License 2.0 | 6 votes |
def build_y_vocab(self): pool = Pool(opt.num_workers) try: rets = pool.map_async(build_y_vocab, [(data_path, 'train') for data_path in opt.train_data_list]).get(99999999) pool.close() pool.join() y_vocab = set() for _y_vocab in rets: for k in six.iterkeys(_y_vocab): y_vocab.add(k) self.y_vocab = {y: idx for idx, y in enumerate(y_vocab)} except KeyboardInterrupt: pool.terminate() pool.join() raise self.logger.info('size of y vocab: %s' % len(self.y_vocab)) cPickle.dump(self.y_vocab, open(self.y_vocab_path, 'wb'), 2)
Example #11
Source File: flask_sqlalchemy.py From nplusone with MIT License | 6 votes |
def init_app(self, app): @app.before_request def connect(): self.load_config(app) g.listeners = getattr(g, 'listeners', {}) for name, listener_type in six.iteritems(listeners.listeners): g.listeners[name] = listener_type(self) g.listeners[name].setup() @app.after_request def disconnect(response): for name in six.iterkeys(listeners.listeners): listener = g.listeners.pop(name, None) if listener: listener.teardown() return response
Example #12
Source File: gradients_impl.py From lambda-packs with MIT License | 6 votes |
def _MultiDeviceAddN(tensor_list): """Adds tensors from potentially multiple devices.""" # Basic function structure comes from control_flow_ops.group(). # Sort tensors according to their devices. tensors_on_device = collections.defaultdict(lambda: []) for tensor in tensor_list: tensors_on_device[tensor.device].append(tensor) # For each device, add the tensors on that device first. # Then gather the partial sums from multiple devices. # TODO(sjhwang): Create hierarchical aggregation tree as pbar's suggestion. # E.g., aggregate per GPU, then per task, and so on. summands = [] def DeviceKey(dev): return "" if dev is None else dev for dev in sorted(six.iterkeys(tensors_on_device), key=DeviceKey): tensors = tensors_on_device[dev] with ops.colocate_with(tensors[0].op, ignore_existing=True): summands.append(math_ops.add_n(tensors)) return math_ops.add_n(summands)
Example #13
Source File: relationship.py From ripozo with GNU General Public License v2.0 | 6 votes |
def remove_child_resource_properties(self, properties): """ Removes the properties that are supposed to be on the child resource and not on the parent resource. It copies the properties argument before it removes the copied values. It does not have side effects in other words. :param dict properties: The properties that are in the related resource map that should not be in the parent resource. :return: a dictionary of the updated properties :rtype: :py:class:`dict` """ properties = properties.copy() for key in six.iterkeys(self.property_map): properties.pop(key, None) properties.pop(self.name, None) return properties
Example #14
Source File: client.py From aetros-cli with MIT License | 6 votes |
def wait_sending_last_messages(self): """ Requests all channels to close and waits for it. """ if self.active and self.online is not False: self.logger.debug("client sends last %s messages ..." % ([str(i) + ':' + str(len(x)) for i, x in six.iteritems(self.queues)],)) for channel, messages in six.iteritems(self.queues): for idx, message in enumerate(messages): self.logger.debug("[%s] %d: %s" % (channel, idx, str(message)[0:120])) # send all missing messages # by joining we wait until its loop finish. # it won't loop forever since we've set self.stop_on_empty_queue=True for channel in six.iterkeys(self.ssh_channel): if channel != '': self._end_channel(channel) # last is control channel self._end_channel('')
Example #15
Source File: sgmcmc.py From zhusuan with MIT License | 6 votes |
def _apply_updates(self, grad_func): qs = self._var_list self._define_variables(qs) update_ops, infos = self._update(qs, grad_func) with tf.control_dependencies([self.t.assign_add(1)]): sample_op = tf.group(*update_ops) list_attrib = zip(*map(lambda d: six.itervalues(d), infos)) list_attrib_with_k = map(lambda l: dict(zip(self._latent_k, l)), list_attrib) attrib_names = list(six.iterkeys(infos[0])) dict_info = dict(zip(attrib_names, list_attrib_with_k)) SGMCMCInfo = namedtuple("SGMCMCInfo", attrib_names) sgmcmc_info = SGMCMCInfo(**dict_info) return sample_op, sgmcmc_info
Example #16
Source File: _utils.py From python-zhmcclient with Apache License 2.0 | 6 votes |
def repr_dict(_dict, indent): """Return a debug representation of a dict or OrderedDict.""" # pprint represents OrderedDict objects using the tuple init syntax, # which is not very readable. Therefore, dictionaries are iterated over. if _dict is None: return 'None' if not isinstance(_dict, Mapping): raise TypeError("Object must be a mapping, but is a %s" % type(_dict)) if isinstance(_dict, OrderedDict): kind = 'ordered' ret = '%s {\n' % kind # non standard syntax for the kind indicator for key in six.iterkeys(_dict): value = _dict[key] ret += _indent('%r: %r,\n' % (key, value), 2) else: # dict kind = 'sorted' ret = '%s {\n' % kind # non standard syntax for the kind indicator for key in sorted(six.iterkeys(_dict)): value = _dict[key] ret += _indent('%r: %r,\n' % (key, value), 2) ret += '}' ret = repr_text(ret, indent=indent) return ret.lstrip(' ')
Example #17
Source File: generate.py From mathematics_dataset with Apache License 2.0 | 6 votes |
def _filter_and_flatten(modules_): """Returns flattened dict, filtered according to FLAGS.""" flat = collections.OrderedDict() def add(submodules, prefix=None): for key, module_or_function in six.iteritems(submodules): full_name = prefix + '__' + key if prefix is not None else key if isinstance(module_or_function, dict): add(module_or_function, full_name) else: if FLAGS.filter not in full_name: continue flat[full_name] = module_or_function add(modules_) # Make sure list of modules are in deterministic order. This is important when # generating across multiple machines. flat = collections.OrderedDict( [(key, flat[key]) for key in sorted(six.iterkeys(flat))]) return flat
Example #18
Source File: base.py From django-multi-form-view with GNU General Public License v3.0 | 5 votes |
def get_initial(self): """ Returns a copy of `initial` with empty initial data dictionaries for each form. """ initial = super(MultiFormView, self).get_initial() for key in six.iterkeys(self.form_classes): initial[key] = {} return initial
Example #19
Source File: machines.py From automaton with Apache License 2.0 | 5 votes |
def states(self): """Returns the state names.""" return list(six.iterkeys(self._states))
Example #20
Source File: machines.py From automaton with Apache License 2.0 | 5 votes |
def _orderedkeys(data, sort=True): if sort: return sorted(six.iterkeys(data)) else: return list(six.iterkeys(data))
Example #21
Source File: connection.py From mixpanel-query-py with MIT License | 5 votes |
def check_params(self, params): copyParams = params.copy() for key in six.iterkeys(copyParams): if not copyParams[key]: del params[key] return params
Example #22
Source File: test_services.py From django-service-objects with MIT License | 5 votes |
def test_auto_fields(self): class FooModelService(ModelService): class Meta: model = FooModel fields = '__all__' def process(self): pass f = FooModelService() field_names = list(six.iterkeys(f.fields)) self.assertEqual(1, len(field_names)) self.assertEqual('one', field_names[0])
Example #23
Source File: client.py From aetros-cli with MIT License | 5 votes |
def end(self): self.expect_close = True for channel in six.iterkeys(self.ssh_channel): self.send_message({'type': 'end'}, channel) self.wait_for_close()
Example #24
Source File: ServerCommand.py From aetros-cli with MIT License | 5 votes |
def on_signusr1(self, signal, frame): self.logger.info("ending=%s, active=%s, registered=%s, %d running, %d messages, %d connection_tries" % ( str(self.ending), str(self.active), str(self.registered), len(self.job_processes), len(self.server.queue), self.server.connection_tries, )) for full_id in six.iterkeys(self.job_processes): self.logger.info("Running " + full_id)
Example #25
Source File: base.py From designate with Apache License 2.0 | 5 votes |
def _set_object_from_model(obj, model, **extra): """Update a DesignateObject with the values from a SQLA Model""" for fieldname in six.iterkeys(obj.FIELDS): if hasattr(model, fieldname): if fieldname in six.iterkeys(extra): obj[fieldname] = extra[fieldname] else: obj[fieldname] = getattr(model, fieldname) obj.obj_reset_changes() return obj
Example #26
Source File: s3server.py From ec2-api with Apache License 2.0 | 5 votes |
def render_xml(self, value): assert isinstance(value, dict) and len(value) == 1 self.set_header("Content-Type", "application/xml; charset=UTF-8") name = next(six.iterkeys(value)) parts = [] parts.append('<' + name + ' xmlns="http://s3.amazonaws.com/doc/2006-03-01/">') self._render_parts(next(six.itervalues(value)), parts) parts.append('</' + name + '>') self.finish('<?xml version="1.0" encoding="UTF-8"?>\n' + ''.join(parts))
Example #27
Source File: number.py From mathematics_dataset with Apache License 2.0 | 5 votes |
def _coprime_density(value): """Returns float > 0; asymptotic density of integers coprime to `value`.""" factors = sympy.factorint(value) density = 1.0 for prime in six.iterkeys(factors): density *= 1 - 1 / prime return density
Example #28
Source File: apirequest.py From ec2-api with Apache License 2.0 | 5 votes |
def invoke(self, context): try: method = getattr(self.controller, ec2utils.camelcase_to_underscore(self.action)) except AttributeError: LOG.exception('Unsupported API request: action = %(action)s', {'action': self.action}) raise exception.InvalidRequest() args = ec2utils.dict_from_dotted_str(self.args.items()) def convert_dicts_to_lists(args): if not isinstance(args, dict): return args for key in args.keys(): # NOTE(vish): Turn numeric dict keys into lists # NOTE(Alex): Turn "value"-only dict keys into values if isinstance(args[key], dict): if args[key] == {}: continue first_subkey = next(six.iterkeys(args[key])) if first_subkey.isdigit(): s = args[key] args[key] = [convert_dicts_to_lists(s[k]) for k in sorted(s)] elif (first_subkey == 'value' and len(args[key]) == 1): args[key] = args[key]['value'] return args args = convert_dicts_to_lists(args) result = method(context, **args) return self._render_response(result, context.request_id)
Example #29
Source File: probability.py From mathematics_dataset with Apache License 2.0 | 5 votes |
def probability(self, event): # Specializations for optimization. if isinstance(event, FiniteProductEvent): assert len(self._spaces) == len(event.events) return sympy.prod([ space.probability(event_slice) for space, event_slice in zip(self._spaces, event.events)]) if isinstance(event, CountLevelSetEvent) and self.all_spaces_equal(): space = self._spaces[0] counts = event.counts probabilities = { value: space.probability(DiscreteEvent({value})) for value in six.iterkeys(counts) } num_events = sum(six.itervalues(counts)) assert num_events == len(self._spaces) # Multinomial coefficient: coeff = ( sympy.factorial(num_events) / sympy.prod( [sympy.factorial(i) for i in six.itervalues(counts)])) return coeff * sympy.prod([ pow(probabilities[value], counts[value]) for value in six.iterkeys(counts) ]) raise ValueError('Unhandled event type {}'.format(type(event)))
Example #30
Source File: machines.py From automaton with Apache License 2.0 | 5 votes |
def __iter__(self): """Iterates over (start, event, end) transition tuples.""" for state in six.iterkeys(self._states): for event, target in self._transitions[state].items(): yield (state, event, target.name)