Python sklearn.decomposition.IncrementalPCA() Examples
The following are 30
code examples of sklearn.decomposition.IncrementalPCA().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.decomposition
, or try the search function
.
Example #1
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 8 votes |
def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
Example #2
Source File: test_decomposition.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 7 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.decomposition.PCA, decomposition.PCA) self.assertIs(df.decomposition.IncrementalPCA, decomposition.IncrementalPCA) self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA) self.assertIs(df.decomposition.FactorAnalysis, decomposition.FactorAnalysis) self.assertIs(df.decomposition.FastICA, decomposition.FastICA) self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD) self.assertIs(df.decomposition.NMF, decomposition.NMF) self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA) self.assertIs(df.decomposition.MiniBatchSparsePCA, decomposition.MiniBatchSparsePCA) self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder) self.assertIs(df.decomposition.DictionaryLearning, decomposition.DictionaryLearning) self.assertIs(df.decomposition.MiniBatchDictionaryLearning, decomposition.MiniBatchDictionaryLearning) self.assertIs(df.decomposition.LatentDirichletAllocation, decomposition.LatentDirichletAllocation)
Example #3
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = np.array([[0, 1, 0], [1, 0, 0]]) X = da.from_array(X, chunks=[4, -1]) n_samples, n_features = X.shape for n_components in [-1, 0, 0.99, 4]: with pytest.raises( ValueError, match="n_components={} invalid" " for n_features={}, need more rows than" " columns for IncrementalPCA" " processing".format(n_components, n_features), ): IncrementalPCA(n_components, batch_size=10).fit(X) # Tests that n_components is also <= n_samples. n_components = 3 with pytest.raises( ValueError, match="n_components={} must be" " less or equal to the batch number of" " samples {}".format(n_components, n_samples), ): IncrementalPCA(n_components=n_components).partial_fit(X)
Example #4
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * 0.1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) X = da.from_array(X, chunks=(3, -1)) Xt = da.from_array(Xt, chunks=(4, 3)) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) assert isinstance(Yt, da.Array) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1.0, 1)
Example #5
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]))
Example #6
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
Example #7
Source File: luminolFunc.py From pyodds with MIT License | 6 votes |
def fit(self,X): """Fit detector. Parameters ---------- X : dataframe of shape (n_samples, n_features) The input samples. """ # a=str(ts[:,0]) X=X.to_numpy() timestamp = np.asarray(X[:,0].astype(np.datetime64)) pca = IncrementalPCA(n_components=1) value=np.reshape(pca.fit_transform(X[:,1:]),-1) X = pd.Series(value, index=timestamp) X.index = X.index.map(lambda d: to_epoch(str(d))) lts = TimeSeries(X.to_dict()) self.ts=timestamp self.ts_value=value self.detector = anomaly_detector.AnomalyDetector(lts) return self
Example #8
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_incremental_pca_partial_fit_float_division(): # Test to ensure float division is used in all versions of Python # (non-regression test for issue #9489) rng = np.random.RandomState(0) A = rng.randn(5, 3) + 2 B = rng.randn(7, 3) + 5 pca = IncrementalPCA(n_components=2) pca.partial_fit(A) # Set n_samples_seen_ to be a floating point number instead of an int pca.n_samples_seen_ = float(pca.n_samples_seen_) pca.partial_fit(B) singular_vals_float_samples_seen = pca.singular_values_ pca2 = IncrementalPCA(n_components=2) pca2.partial_fit(A) pca2.partial_fit(B) singular_vals_int_samples_seen = pca2.singular_values_ np.testing.assert_allclose(singular_vals_float_samples_seen, singular_vals_int_samples_seen)
Example #9
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
Example #10
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) X = da.from_array(X, chunks=[4, -1]) X2 = da.from_array(X2, chunks=[4, -1]) X3 = da.from_array(X3, chunks=[4, -1]) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) with pytest.raises(ValueError): ipca.partial_fit(X2) # Increasing number of components ipca.set_params(n_components=15) with pytest.raises(ValueError): ipca.partial_fit(X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X)
Example #11
Source File: pca.py From tedana with GNU Lesser General Public License v2.1 | 6 votes |
def low_mem_pca(data): """ Run Singular Value Decomposition (SVD) on input data. Parameters ---------- data : (S [*E] x T) array_like Optimally combined (S x T) or full multi-echo (S*E x T) data. Returns ------- u : (S [*E] x C) array_like Component weight map for each component. s : (C,) array_like Variance explained for each component. v : (C x T) array_like Component timeseries. """ from sklearn.decomposition import IncrementalPCA ppca = IncrementalPCA(n_components=(data.shape[-1] - 1)) ppca.fit(data) v = ppca.components_.T s = ppca.explained_variance_ u = np.dot(np.dot(data, v), np.diag(1. / s)) return u, s, v
Example #12
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_incremental_pca_set_params(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X2 = rng.randn(n_samples, n_features) X3 = rng.randn(n_samples, n_features) ipca = IncrementalPCA(n_components=20) ipca.fit(X) # Decreasing number of components ipca.set_params(n_components=10) assert_raises(ValueError, ipca.partial_fit, X2) # Increasing number of components ipca.set_params(n_components=15) assert_raises(ValueError, ipca.partial_fit, X3) # Returning to original setting ipca.set_params(n_components=20) ipca.partial_fit(X)
Example #13
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_whitening(svd_solver): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix( 1000, 10, tail_strength=0.0, effective_rank=2, random_state=1999 ) X = da.from_array(X, chunks=[200, -1]) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc, svd_solver=svd_solver).fit(X) ipca = IncrementalPCA( whiten=True, n_components=nc, batch_size=250, svd_solver=svd_solver ).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X.compute(), Xinv_ipca, decimal=prec) assert_almost_equal(X.compute(), Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
Example #14
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_incremental_pca_partial_fit(): # Test that fit and partial_fit get equivalent results. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) batch_size = 10 ipca = IncrementalPCA(n_components=2, batch_size=batch_size).fit(X) pipca = IncrementalPCA(n_components=2, batch_size=batch_size) # Add one to make sure endpoint is included batch_itr = np.arange(0, n + 1, batch_size) for i, j in zip(batch_itr[:-1], batch_itr[1:]): pipca.partial_fit(X[i:j, :]) assert_almost_equal(ipca.components_, pipca.components_, decimal=3)
Example #15
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_explained_variances(svd_solver): # Test that PCA and IncrementalPCA calculations match X = datasets.make_low_rank_matrix( 1000, 100, tail_strength=0.0, effective_rank=10, random_state=1999 ) X = da.from_array(X, chunks=[400, -1]) prec = 3 n_samples, n_features = X.shape for nc in [None, 99]: pca = PCA(n_components=nc, svd_solver=svd_solver).fit(X) ipca = IncrementalPCA( n_components=nc, batch_size=100, svd_solver=svd_solver ).fit(X) assert_almost_equal( pca.explained_variance_, ipca.explained_variance_, decimal=prec ) assert_almost_equal( pca.explained_variance_ratio_, ipca.explained_variance_ratio_, decimal=prec ) assert_almost_equal(pca.noise_variance_, ipca.noise_variance_, decimal=prec)
Example #16
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_n_components_none(): # Ensures that n_components == None is handled correctly rng = np.random.RandomState(1999) for n_samples, n_features in [(50, 10), (10, 50)]: X = rng.rand(n_samples, n_features) ipca = IncrementalPCA(n_components=None) # First partial_fit call, ipca.n_components_ is inferred from # min(X.shape) ipca.partial_fit(X) assert ipca.n_components_ == min(X.shape) # Second partial_fit call, ipca.n_components_ is inferred from # ipca.components_ computed from the first partial_fit call ipca.partial_fit(X) assert ipca.n_components_ == ipca.components_.shape[0]
Example #17
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = np.array([[0, 1, 0], [1, 0, 0]]) n_samples, n_features = X.shape for n_components in [-1, 0, .99, 4]: assert_raises_regex(ValueError, "n_components={} invalid for n_features={}, need" " more rows than columns for IncrementalPCA " "processing".format(n_components, n_features), IncrementalPCA(n_components, batch_size=10).fit, X) # Tests that n_components is also <= n_samples. n_components = 3 assert_raises_regex(ValueError, "n_components={} must be less or equal to " "the batch number of samples {}".format( n_components, n_samples), IncrementalPCA( n_components=n_components).partial_fit, X)
Example #18
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_incremental_pca_check_projection(): # Test that the projection of data is correct. rng = np.random.RandomState(1999) n, p = 100, 3 X = rng.randn(n, p) * .1 X[:10] += np.array([3, 4, 5]) Xt = 0.1 * rng.randn(1, p) + np.array([3, 4, 5]) # Get the reconstruction of the generated data X # Note that Xt has the same "components" as X, just separated # This is what we want to ensure is recreated correctly Yt = IncrementalPCA(n_components=2).fit(X).transform(Xt) # Normalize Yt /= np.sqrt((Yt ** 2).sum()) # Make sure that the first element of Yt is ~1, this means # the reconstruction worked as expected assert_almost_equal(np.abs(Yt[0][0]), 1., 1)
Example #19
Source File: test_incremental_pca.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_incremental_pca(): # Incremental PCA on dense arrays. X = iris.data batch_size = X.shape[0] // 3 ipca = IncrementalPCA(n_components=2, batch_size=batch_size) pca = PCA(n_components=2) pca.fit_transform(X) X_transformed = ipca.fit_transform(X) np.testing.assert_equal(X_transformed.shape, (X.shape[0], 2)) assert_almost_equal(ipca.explained_variance_ratio_.sum(), pca.explained_variance_ratio_.sum(), 1) for n_components in [1, 2, X.shape[1]]: ipca = IncrementalPCA(n_components, batch_size=batch_size) ipca.fit(X) cov = ipca.get_covariance() precision = ipca.get_precision() assert_array_almost_equal(np.dot(cov, precision), np.eye(X.shape[1]))
Example #20
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_whitening(): # Test that PCA and IncrementalPCA transforms match to sign flip. X = datasets.make_low_rank_matrix(1000, 10, tail_strength=0., effective_rank=2, random_state=1999) prec = 3 n_samples, n_features = X.shape for nc in [None, 9]: pca = PCA(whiten=True, n_components=nc).fit(X) ipca = IncrementalPCA(whiten=True, n_components=nc, batch_size=250).fit(X) Xt_pca = pca.transform(X) Xt_ipca = ipca.transform(X) assert_almost_equal(np.abs(Xt_pca), np.abs(Xt_ipca), decimal=prec) Xinv_ipca = ipca.inverse_transform(Xt_ipca) Xinv_pca = pca.inverse_transform(Xt_pca) assert_almost_equal(X, Xinv_ipca, decimal=prec) assert_almost_equal(X, Xinv_pca, decimal=prec) assert_almost_equal(Xinv_pca, Xinv_ipca, decimal=prec)
Example #21
Source File: test_sklearn_pca_converter.py From sklearn-onnx with MIT License | 5 votes |
def test_incrementalpca_default(self): model, X_test = _fit_model_pca(IncrementalPCA()) model_onnx = convert_sklearn( model, initial_types=[("input", FloatTensorType([None, X_test.shape[1]]))], ) self.assertTrue(model_onnx is not None) dump_data_and_model( X_test, model, model_onnx, basename="SklearnIncrementalPCADefault", )
Example #22
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_incremental_pca_num_features_change(): # Test that changing n_components will raise an error. rng = np.random.RandomState(1999) n_samples = 100 X = rng.randn(n_samples, 20) X2 = rng.randn(n_samples, 50) X = da.from_array(X, chunks=[4, -1]) X2 = da.from_array(X2, chunks=[4, -1]) ipca = IncrementalPCA(n_components=None) ipca.fit(X) with pytest.raises(ValueError): ipca.partial_fit(X2)
Example #23
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_incremental_pca_against_pca_random_data(svd_solver): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) X = da.from_array(X, chunks=[40, -1]) Y_pca = PCA(n_components=3, svd_solver=svd_solver).fit_transform(X) Y_ipca = IncrementalPCA( n_components=3, batch_size=25, svd_solver=svd_solver ).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
Example #24
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_inverse(): # Test that the projection of data can be inverted. rng = np.random.RandomState(1999) n, p = 50, 3 X = rng.randn(n, p) # spherical data X[:, 1] *= .00001 # make middle component relatively small X += [5, 4, 3] # make a large mean # same check that we can find the original data from the transformed # signal (since the data is almost of rank n_components) ipca = IncrementalPCA(n_components=2, batch_size=10).fit(X) Y = ipca.transform(X) Y_inverse = ipca.inverse_transform(Y) assert_almost_equal(X, Y_inverse, decimal=3)
Example #25
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_validation(): # Test that n_components is >=1 and <= n_features. X = [[0, 1], [1, 0]] for n_components in [-1, 0, .99, 3]: assert_raises(ValueError, IncrementalPCA(n_components, batch_size=10).fit, X)
Example #26
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_batch_signs(): # Test that components_ sign is stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(10, 20) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(np.sign(i), np.sign(j), decimal=6)
Example #27
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_batch_values(): # Test that components_ values are stable over batch sizes. rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) all_components = [] batch_sizes = np.arange(20, 40, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=None, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for i, j in zip(all_components[:-1], all_components[1:]): assert_almost_equal(i, j, decimal=1)
Example #28
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_against_pca_iris(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). X = iris.data Y_pca = PCA(n_components=2).fit_transform(X) Y_ipca = IncrementalPCA(n_components=2, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
Example #29
Source File: test_incremental_pca.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_incremental_pca_against_pca_random_data(): # Test that IncrementalPCA and PCA are approximate (to a sign flip). rng = np.random.RandomState(1999) n_samples = 100 n_features = 3 X = rng.randn(n_samples, n_features) + 5 * rng.rand(1, n_features) Y_pca = PCA(n_components=3).fit_transform(X) Y_ipca = IncrementalPCA(n_components=3, batch_size=25).fit_transform(X) assert_almost_equal(np.abs(Y_pca), np.abs(Y_ipca), 1)
Example #30
Source File: test_incremental_pca.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_incremental_pca_batch_rank(): # Test sample size in each batch is always larger or equal to n_components rng = np.random.RandomState(1999) n_samples = 100 n_features = 20 X = rng.randn(n_samples, n_features) X = da.from_array(X, chunks=[40, -1]) all_components = [] batch_sizes = np.arange(20, 90, 3) for batch_size in batch_sizes: ipca = IncrementalPCA(n_components=20, batch_size=batch_size).fit(X) all_components.append(ipca.components_) for components_i, components_j in zip(all_components[:-1], all_components[1:]): assert_allclose_dense_sparse(components_i, components_j)