Python sklearn.linear_model.BayesianRidge() Examples

The following are 15 code examples of sklearn.linear_model.BayesianRidge(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.linear_model , or try the search function .
Example #1
Source File: test_impute.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def test_iterative_imputer_estimators(estimator):
    rng = np.random.RandomState(0)

    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()

    imputer = IterativeImputer(missing_values=0,
                               max_iter=1,
                               estimator=estimator,
                               random_state=rng)
    imputer.fit_transform(X)

    # check that types are correct for estimators
    hashes = []
    for triplet in imputer.imputation_sequence_:
        expected_type = (type(estimator) if estimator is not None
                         else type(BayesianRidge()))
        assert isinstance(triplet.estimator, expected_type)
        hashes.append(id(triplet.estimator))

    # check that each estimator is unique
    assert len(set(hashes)) == len(hashes) 
Example #2
Source File: scikitlearn.py    From sia-cog with MIT License 5 votes vote down vote up
def getModels():
    result = []
    result.append("LinearRegression")
    result.append("BayesianRidge")
    result.append("ARDRegression")
    result.append("ElasticNet")
    result.append("HuberRegressor")
    result.append("Lasso")
    result.append("LassoLars")
    result.append("Rigid")
    result.append("SGDRegressor")
    result.append("SVR")
    result.append("MLPClassifier")
    result.append("KNeighborsClassifier")
    result.append("SVC")
    result.append("GaussianProcessClassifier")
    result.append("DecisionTreeClassifier")
    result.append("RandomForestClassifier")
    result.append("AdaBoostClassifier")
    result.append("GaussianNB")
    result.append("LogisticRegression")
    result.append("QuadraticDiscriminantAnalysis")
    return result 
Example #3
Source File: regression.py    From stacking with MIT License 5 votes vote down vote up
def build_model(self):
            # Direct passing model parameters can be used
            return linear_model.BayesianRidge(normalize=True, verbose=True, compute_score=True)


        
# ----- END first stage stacking model -----

# ----- Second stage stacking model ----- 
Example #4
Source File: regressor.py    From ramp-workflow with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __init__(self):
        self.reg = linear_model.BayesianRidge() 
Example #5
Source File: cobra.py    From pycobra with MIT License 5 votes vote down vote up
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 

        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded.
        Returns
        -------
        self : returns an instance of self.
        """

        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = LinearSVR(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
Example #6
Source File: kernelcobra.py    From pycobra with MIT License 5 votes vote down vote up
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 
        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded. 
            Default is basic,
        Returns
        -------
        self : returns an instance of self.
        """
        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = SVR().fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
Example #7
Source File: test_sklearn_glm_regressor_converter.py    From sklearn-onnx with MIT License 5 votes vote down vote up
def test_model_bayesian_ridge(self):
        model, X = fit_regression_model(linear_model.BayesianRidge())
        model_onnx = convert_sklearn(
            model, "bayesian ridge",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnBayesianRidge-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
Example #8
Source File: test_linear_model.py    From pandas-ml with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
Example #9
Source File: estimator.py    From XenonPy with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __init__(self, descriptor: Union[BaseFeaturizer, BaseDescriptor], *, targets={}, **estimators: BaseEstimator):
        """
        Gaussian loglikelihood.

        Parameters
        ----------
        descriptor: BaseFeaturizer or BaseDescriptor
            Descriptor calculator.
        estimators: BaseEstimator
            Gaussian estimators follow the scikit-learn style.
            These estimators must provide a method named ``predict`` which
            accesses descriptors as input and returns ``(mean, std)`` in order.
            By default, BayesianRidge_ will be used.

            .. _BayesianRidge: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn-linear-model-bayesianridge
        targets: dictionary
            Upper and lower bounds for each property to calculate the Gaussian CDF probability
        """
        if estimators:
            self._mdl = deepcopy(estimators)
        else:
            self._mdl = {}

        if not isinstance(descriptor, (BaseFeaturizer, BaseDescriptor)):
            raise TypeError('<descriptor> must be a subclass of <BaseFeaturizer> or <BaseDescriptor>')
        self._descriptor = descriptor
        self._descriptor.on_errors = 'nan'

        self._targets = deepcopy(targets) 
Example #10
Source File: estimator.py    From XenonPy with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def predict(self, smiles, **kwargs):
        fps = self._descriptor.transform(smiles, return_type='df')
        fps_ = fps.dropna()
        tmp = {}
        for k, v in self._mdl.items():
            if isinstance(v, BayesianRidge):
                tmp[k + ': mean'], tmp[k + ': std'] = v.predict(fps_, return_std=True)
            else:
                tmp[k + ': mean'], tmp[k + ': std'] = v.predict(fps_, **kwargs)

        tmp = pd.DataFrame(data=tmp, index=fps_.index)
        return pd.DataFrame(data=tmp, index=fps.index)

    # todo: implement scale function 
Example #11
Source File: test_iqspr.py    From XenonPy with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def test_gaussian_ll_1(data):
    bre = deepcopy(data['bre'])
    bre2 = data['bre2']
    X, y = data['pg']

    assert 'bandgap' in bre._mdl
    assert 'glass_transition_temperature' in bre._mdl
    assert 'refractive_index' in bre2._mdl
    assert 'density' in bre2._mdl

    ll = bre.log_likelihood(X.sample(10),
                            bandgap=(7, 8),
                            glass_transition_temperature=(300, 400))
    assert ll.shape == (10,2)
    assert isinstance(bre['bandgap'], BayesianRidge)
    assert isinstance(bre['glass_transition_temperature'], BayesianRidge)

    with pytest.raises(KeyError):
        bre['other']

    with pytest.raises(TypeError):
        bre['other'] = 1
    bre['other'] = BayesianRidge()

    bre.remove_estimator()
    assert bre._mdl == {} 
Example #12
Source File: task.py    From kaggle-HomeDepot with MIT License 4 votes vote down vote up
def _get_learner(self):
        # xgboost
        if self.learner_name in ["reg_xgb_linear", "reg_xgb_tree", "reg_xgb_tree_best_single_model"]:
            return XGBRegressor(**self.param_dict)
        if self.learner_name in ["clf_xgb_linear", "clf_xgb_tree"]:
            return XGBClassifier(**self.param_dict)
        # sklearn
        if self.learner_name == "reg_skl_lasso":
            return Lasso(**self.param_dict)
        if self.learner_name == "reg_skl_ridge":
            return Ridge(**self.param_dict)
        if self.learner_name == "reg_skl_random_ridge":
            return RandomRidge(**self.param_dict)
        if self.learner_name == "reg_skl_bayesian_ridge":
            return BayesianRidge(**self.param_dict)
        if self.learner_name == "reg_skl_svr":
            return SVR(**self.param_dict)
        if self.learner_name == "reg_skl_lsvr":
            return LinearSVR(**self.param_dict)
        if self.learner_name == "reg_skl_knn":
            return KNNRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_etr":
            return ExtraTreesRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_rf":
            return RandomForestRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_gbm":
            return GradientBoostingRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_adaboost":
            return AdaBoostRegressor(**self.param_dict)
        # keras
        if self.learner_name == "reg_keras_dnn":
            try:
                return KerasDNNRegressor(**self.param_dict)
            except:
                return None
        # rgf
        if self.learner_name == "reg_rgf":
            return RGFRegressor(**self.param_dict)
        # ensemble
        if self.learner_name == "reg_ensemble":
            return EnsembleLearner(**self.param_dict)
            
        return None 
Example #13
Source File: scikitlearn.py    From sia-cog with MIT License 4 votes vote down vote up
def getSKLearnModel(modelName):
    if modelName == 'LinearRegression':
        model = linear_model.LinearRegression()
    elif modelName == 'BayesianRidge':
        model = linear_model.BayesianRidge()
    elif modelName == 'ARDRegression':
        model = linear_model.ARDRegression()
    elif modelName == 'ElasticNet':
        model = linear_model.ElasticNet()
    elif modelName == 'HuberRegressor':
        model = linear_model.HuberRegressor()
    elif modelName == 'Lasso':
        model = linear_model.Lasso()
    elif modelName == 'LassoLars':
        model = linear_model.LassoLars()
    elif modelName == 'Rigid':
        model = linear_model.Ridge()
    elif modelName == 'SGDRegressor':
        model = linear_model.SGDRegressor()
    elif modelName == 'SVR':
        model = SVR()
    elif modelName=='MLPClassifier':
        model = MLPClassifier()
    elif modelName=='KNeighborsClassifier':
        model = KNeighborsClassifier()
    elif modelName=='SVC':
        model = SVC()
    elif modelName=='GaussianProcessClassifier':
        model = GaussianProcessClassifier()
    elif modelName=='DecisionTreeClassifier':
        model = DecisionTreeClassifier()
    elif modelName=='RandomForestClassifier':
        model = RandomForestClassifier()
    elif modelName=='AdaBoostClassifier':
        model = AdaBoostClassifier()
    elif modelName=='GaussianNB':
        model = GaussianNB()
    elif modelName=='LogisticRegression':
        model = linear_model.LogisticRegression()
    elif modelName=='QuadraticDiscriminantAnalysis':
        model = QuadraticDiscriminantAnalysis()

    return model 
Example #14
Source File: pca_regression.py    From AmusingPythonCodes with MIT License 4 votes vote down vote up
def lets_try(train, labels):
    results = {}

    def test_model(clf):
        cv = KFold(n_splits=5, shuffle=True, random_state=45)
        r2 = make_scorer(r2_score)
        r2_val_score = cross_val_score(clf, train, labels, cv=cv, scoring=r2)
        scores = [r2_val_score.mean()]
        return scores

    clf = linear_model.LinearRegression()
    results["Linear"] = test_model(clf)

    clf = linear_model.Ridge()
    results["Ridge"] = test_model(clf)

    clf = linear_model.BayesianRidge()
    results["Bayesian Ridge"] = test_model(clf)

    clf = linear_model.HuberRegressor()
    results["Hubber"] = test_model(clf)

    clf = linear_model.Lasso(alpha=1e-4)
    results["Lasso"] = test_model(clf)

    clf = BaggingRegressor()
    results["Bagging"] = test_model(clf)

    clf = RandomForestRegressor()
    results["RandomForest"] = test_model(clf)

    clf = AdaBoostRegressor()
    results["AdaBoost"] = test_model(clf)

    clf = svm.SVR()
    results["SVM RBF"] = test_model(clf)

    clf = svm.SVR(kernel="linear")
    results["SVM Linear"] = test_model(clf)

    results = pd.DataFrame.from_dict(results, orient='index')
    results.columns = ["R Square Score"]
    # results = results.sort(columns=["R Square Score"], ascending=False)
    results.plot(kind="bar", title="Model Scores")
    axes = plt.gca()
    axes.set_ylim([0.5, 1])
    return results 
Example #15
Source File: estimator.py    From XenonPy with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def fit(self, smiles, y=None, *, X_scaler=None, y_scaler=None, **kwargs):
        """
        Default - automatically remove NaN data rows
        
        Parameters
        ----------
        smiles: list[str]
            SMILES for training.
        y: pandas.DataFrame
            Target properties for training.
        X_scaler: Scaler (optional, not implement)
            Scaler for transform X.
        y_scaler: Scaler (optional, not implement)
            Scaler for transform y.
        kwargs: dict
            Parameters pass to BayesianRidge initialization.
        """

        if self._mdl:
            raise RuntimeError('estimators have been set.'
                               'If you want to re-train these estimators,'
                               'please use `remove_estimator()` method first.')

        if not isinstance(y, (pd.DataFrame, pd.Series)):
            raise TypeError('please package all properties into a pd.DataFrame or pd.Series')

        # remove NaN from X
        desc = self._descriptor.transform(smiles, return_type='df').reset_index(drop=True)
        y = y.reset_index(drop=True)
        desc.dropna(inplace=True)
        y = pd.DataFrame(y.loc[desc.index])

        for c in y:
            y_ = y[c]  # get target property.
            # remove NaN from y_
            y_.dropna(inplace=True)
            desc_ = desc.loc[y_.index]
            desc_ = desc_.values

            mdl = BayesianRidge(compute_score=True, **kwargs)
            mdl.fit(desc_, y_)
            self._mdl[c] = mdl

    # log_likelihood returns a dataframe of log-likelihood values of each property & sample