Python cv2.GaussianBlur() Examples
The following are 30
code examples of cv2.GaussianBlur().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: motion.py From object-detection with MIT License | 10 votes |
def prediction(self, image): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.GaussianBlur(image, (21, 21), 0) if self.avg is None: self.avg = image.copy().astype(float) cv2.accumulateWeighted(image, self.avg, 0.5) frameDelta = cv2.absdiff(image, cv2.convertScaleAbs(self.avg)) thresh = cv2.threshold( frameDelta, DELTA_THRESH, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=2) cnts = cv2.findContours( thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) self.avg = image.copy().astype(float) return cnts
Example #2
Source File: squares.py From OpenCV-Python-Tutorial with MIT License | 9 votes |
def find_squares(img): img = cv2.GaussianBlur(img, (5, 5), 0) squares = [] for gray in cv2.split(img): for thrs in xrange(0, 255, 26): if thrs == 0: bin = cv2.Canny(gray, 0, 50, apertureSize=5) bin = cv2.dilate(bin, None) else: retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY) bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: cnt_len = cv2.arcLength(cnt, True) cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt): cnt = cnt.reshape(-1, 2) max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)]) if max_cos < 0.1: squares.append(cnt) return squares
Example #3
Source File: plate_locate.py From EasyPR-python with Apache License 2.0 | 8 votes |
def sobelOperT(self, img, blursize, morphW, morphH): ''' No different with sobelOper ? ''' blur = cv2.GaussianBlur(img, (blursize, blursize), 0, 0, cv2.BORDER_DEFAULT) if len(blur.shape) == 3: gray = cv2.cvtColor(blur, cv2.COLOR_RGB2GRAY) else: gray = blur x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, 3) absX = cv2.convertScaleAbs(x) grad = cv2.addWeighted(absX, 1, 0, 0, 0) _, threshold = cv2.threshold(grad, 0, 255, cv2.THRESH_OTSU + cv2.THRESH_BINARY) element = cv2.getStructuringElement(cv2.MORPH_RECT, (morphW, morphH)) threshold = cv2.morphologyEx(threshold, cv2.MORPH_CLOSE, element) return threshold
Example #4
Source File: corruptions.py From robustness with Apache License 2.0 | 7 votes |
def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method
Example #5
Source File: AffineInvariantFeatures.py From DoNotSnap with GNU General Public License v3.0 | 7 votes |
def affine_skew(self, tilt, phi, img, mask=None): h, w = img.shape[:2] if mask is None: mask = np.zeros((h, w), np.uint8) mask[:] = 255 A = np.float32([[1, 0, 0], [0, 1, 0]]) if phi != 0.0: phi = np.deg2rad(phi) s, c = np.sin(phi), np.cos(phi) A = np.float32([[c, -s], [s, c]]) corners = [[0, 0], [w, 0], [w, h], [0, h]] tcorners = np.int32(np.dot(corners, A.T)) x, y, w, h = cv2.boundingRect(tcorners.reshape(1, -1, 2)) A = np.hstack([A, [[-x], [-y]]]) img = cv2.warpAffine(img, A, (w, h), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_REPLICATE) if tilt != 1.0: s = 0.8*np.sqrt(tilt * tilt - 1) img = cv2.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01) img = cv2.resize(img, (0, 0), fx=1.0 / tilt, fy=1.0, interpolation=cv2.INTER_NEAREST) A[0] /= tilt if phi != 0.0 or tilt != 1.0: h, w = img.shape[:2] mask = cv2.warpAffine(mask, A, (w, h), flags=cv2.INTER_NEAREST) Ai = cv2.invertAffineTransform(A) return img, mask, Ai
Example #6
Source File: data_augment.py From ssds.pytorch with MIT License | 7 votes |
def _elastic(image, p, alpha=None, sigma=None, random_state=None): """Elastic deformation of images as described in [Simard2003]_ (with modifications). .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for Convolutional Neural Networks applied to Visual Document Analysis", in Proc. of the International Conference on Document Analysis and Recognition, 2003. Based on https://gist.github.com/erniejunior/601cdf56d2b424757de5 From: https://www.kaggle.com/bguberfain/elastic-transform-for-data-augmentation """ if random.random() > p: return image if alpha == None: alpha = image.shape[0] * random.uniform(0.5,2) if sigma == None: sigma = int(image.shape[0] * random.uniform(0.5,1)) if random_state is None: random_state = np.random.RandomState(None) shape = image.shape[:2] dx, dy = [cv2.GaussianBlur((random_state.rand(*shape) * 2 - 1) * alpha, (sigma|1, sigma|1), 0) for _ in range(2)] x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0])) x, y = np.clip(x+dx, 0, shape[1]-1).astype(np.float32), np.clip(y+dy, 0, shape[0]-1).astype(np.float32) return cv2.remap(image, x, y, interpolation=cv2.INTER_LINEAR, borderValue= 0, borderMode=cv2.BORDER_REFLECT)
Example #7
Source File: detector.py From NudeNet with GNU General Public License v3.0 | 6 votes |
def censor(self, img_path, out_path=None, visualize=True, parts_to_blur=['BELLY', 'BUTTOCKS', 'F_BREAST', 'F_GENITALIA', 'M_GENETALIA', 'M_BREAST']): if not out_path and not visualize: print('No out_path passed and visualize is set to false. There is no point in running this function then.') image = cv2.imread(img_path) boxes = Detector.detect(self, img_path) boxes = [i['box'] for i in boxes if i['label'] in parts_to_blur] for box in boxes: part = image[box[1]:box[3], box[0]:box[2]] image = cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 0, 0), cv2.FILLED) # image = cv2.GaussianBlur(part,(23, 23), 30) # image[box[1]:box[3], box[0]:box[2]] = part if visualize: cv2.imshow("Blurred image", image) cv2.waitKey(0) if out_path: cv2.imwrite(out_path, image)
Example #8
Source File: rule_based.py From PythonPilot with Apache License 2.0 | 6 votes |
def __apply_canny(self, src, ksize=7, sigma=1.2, low_th=10, high_th=70): """Apply canny edge detection. Args: src (int): Input image BGR. numpy.ndarray, (720, 1280, 3), 0~255 Returns: dst (int): Output image. numpy.ndarray, (720, 1280), 0~1 """ gray = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY) blur_gray = cv2.GaussianBlur(gray,(ksize, ksize), sigma) dst = cv2.Canny(blur_gray, low_th, high_th) // 255 return dst
Example #9
Source File: make_imagenet_c_inception.py From robustness with Apache License 2.0 | 6 votes |
def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method
Example #10
Source File: make_tinyimagenet_c.py From robustness with Apache License 2.0 | 6 votes |
def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method
Example #11
Source File: morpher.py From yry with Apache License 2.0 | 6 votes |
def correct_color(img1, img2, landmark): blur_amount = 0.4 * np.linalg.norm( np.mean(landmark[core.LEFT_EYE_POINTS], axis=0) - np.mean(landmark[core.RIGHT_EYE_POINTS], axis=0) ) blur_amount = int(blur_amount) if blur_amount % 2 == 0: blur_amount += 1 img1_blur = cv2.GaussianBlur(img1, (blur_amount, blur_amount), 0) img2_blur = cv2.GaussianBlur(img2, (blur_amount, blur_amount), 0) img2_blur += (128 * (img2_blur <= 1.0)).astype(img2_blur.dtype) return img2.astype(np.float64) * img1_blur.astype(np.float64) / img2_blur.astype(np.float64)
Example #12
Source File: augmentation.py From face_landmark with Apache License 2.0 | 6 votes |
def produce_heatmaps_with_bbox(image,label,h_out,w_out,num_klass,ksize=9,sigma=0): heatmap=np.zeros(shape=[h_out,w_out,num_klass]) h,w,_=image.shape for single_box in label: if single_box[4]>=0: ####box center (x,y) center=[(single_box[0]+single_box[2])/2/w,(single_box[1]+single_box[3])/2/h] ###0-1 heatmap[round(center[1]*h_out),round(center[0]*w_out),int(single_box[4]) ]=1. heatmap = cv2.GaussianBlur(heatmap, (ksize,ksize), sigma) am = np.amax(heatmap) if am>0: heatmap /= am / 255. heatmap=np.expand_dims(heatmap,-1) return heatmap
Example #13
Source File: augmentation.py From face_landmark with Apache License 2.0 | 6 votes |
def produce_heatmaps_with_keypoint(image,label,h_out,w_out,num_klass,ksize=7,sigma=0): heatmap=np.zeros(shape=[h_out,w_out,num_klass]) h,w,_=image.shape for i in range(label.shape[0]): single_point=label[i] if single_point[0]>0 and single_point[1]>0: heatmap[int(single_point[1]*(h_out-1)),int(single_point[0]*(w_out-1)),i ]=1. heatmap = cv2.GaussianBlur(heatmap, (ksize,ksize), sigma) am = np.amax(heatmap) if am>0: heatmap /= am / 255. return heatmap
Example #14
Source File: make_cifar_c.py From robustness with Apache License 2.0 | 6 votes |
def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method
Example #15
Source File: test_detection.py From object-detection with MIT License | 6 votes |
def test_motion(): image = cv2.imread("./imgs/image.jpeg") print(image.shape) detector = Detector_Motion() image2 = cv2.imread("./imgs/image_box.jpg") print(image2.shape) assert image.shape == image2.shape image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) image2 = cv2.GaussianBlur(image2, (21, 21), 0) detector.avg = image2.astype(float) output = detector.prediction(image) df = detector.filter_prediction(output, image) image = detector.draw_boxes(image, df) print(df) assert df.shape[0] == 1 cv2.imwrite("./imgs/outputcv.jpg", image)
Example #16
Source File: data_provider.py From exposure with MIT License | 6 votes |
def augment(self, img, strength): s = self.output_size[0] start_x = random.randrange(0, img.shape[0] - s + 1) start_y = random.randrange(0, img.shape[1] - s + 1) img = img[start_x:start_x + s, start_y:start_y + s] ### No resizing and rotating.... # img = rotate_and_crop(img, (random.random() - 0.5) * strength * 300) # img = cv2.resize(img, self.output_size) if random.random() < 0.5: # left-right flip img = img[:, ::-1] if len(img.shape) < 3: img = img[:, :, None] if self.blur: angle = random.uniform(-1, 1) * 10 # img = cv2.GaussianBlur(img, (3, 3), 0) img = rotate_and_crop(img, angle) img = rotate_and_crop(img, -angle) img = cv2.resize(img, dsize=self.output_size) return img
Example #17
Source File: imgproc.py From dataflow with Apache License 2.0 | 6 votes |
def __init__(self, size_range=(0, 3), sigma_range=(0, 0), symmetric=True, max_size=None): """ Args: size_range (tuple[int]): Gaussian window size would be 2 * size + 1, where size is randomly sampled from this [low, high) range. sigma_range (tuple[float]): min,max of the sigma value. 0 means opencv's default. symmetric (bool): whether to use the same size & sigma for x and y. max_size (int): deprecated """ super(GaussianBlur, self).__init__() if not isinstance(size_range, (list, tuple)): size_range = (0, size_range) assert isinstance(sigma_range, (list, tuple)), sigma_range if max_size is not None: log_deprecated("GaussianBlur(max_size=)", "Use size_range= instead!", "2020-09-01") size_range = (0, max_size) self._init(locals())
Example #18
Source File: make_imagenet_c.py From robustness with Apache License 2.0 | 6 votes |
def disk(radius, alias_blur=0.1, dtype=np.float32): if radius <= 8: L = np.arange(-8, 8 + 1) ksize = (3, 3) else: L = np.arange(-radius, radius + 1) ksize = (5, 5) X, Y = np.meshgrid(L, L) aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype) aliased_disk /= np.sum(aliased_disk) # supersample disk to antialias return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur) # Tell Python about the C method
Example #19
Source File: mosse.py From OpenCV-Python-Tutorial with MIT License | 6 votes |
def __init__(self, frame, rect): x1, y1, x2, y2 = rect w, h = map(cv2.getOptimalDFTSize, [x2-x1, y2-y1]) x1, y1 = (x1+x2-w)//2, (y1+y2-h)//2 self.pos = x, y = x1+0.5*(w-1), y1+0.5*(h-1) self.size = w, h img = cv2.getRectSubPix(frame, (w, h), (x, y)) self.win = cv2.createHanningWindow((w, h), cv2.CV_32F) g = np.zeros((h, w), np.float32) g[h//2, w//2] = 1 g = cv2.GaussianBlur(g, (-1, -1), 2.0) g /= g.max() self.G = cv2.dft(g, flags=cv2.DFT_COMPLEX_OUTPUT) self.H1 = np.zeros_like(self.G) self.H2 = np.zeros_like(self.G) for i in xrange(128): a = self.preprocess(rnd_warp(img)) A = cv2.dft(a, flags=cv2.DFT_COMPLEX_OUTPUT) self.H1 += cv2.mulSpectrums(self.G, A, 0, conjB=True) self.H2 += cv2.mulSpectrums( A, A, 0, conjB=True) self.update_kernel() self.update(frame)
Example #20
Source File: SudokuExtractor.py From SolveSudoku with MIT License | 6 votes |
def pre_process_image(img, skip_dilate=False): """Uses a blurring function, adaptive thresholding and dilation to expose the main features of an image.""" # Gaussian blur with a kernal size (height, width) of 9. # Note that kernal sizes must be positive and odd and the kernel must be square. proc = cv2.GaussianBlur(img.copy(), (9, 9), 0) # Adaptive threshold using 11 nearest neighbour pixels proc = cv2.adaptiveThreshold(proc, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2) # Invert colours, so gridlines have non-zero pixel values. # Necessary to dilate the image, otherwise will look like erosion instead. proc = cv2.bitwise_not(proc, proc) if not skip_dilate: # Dilate the image to increase the size of the grid lines. kernel = np.array([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]],np.uint8) proc = cv2.dilate(proc, kernel) return proc
Example #21
Source File: imgproc.py From DDRL with Apache License 2.0 | 5 votes |
def __init__(self, max_size=3): """:params max_size: (maximum kernel size-1)/2""" super(GaussianBlur, self).__init__() self._init(locals())
Example #22
Source File: line_graph.py From PPGNet with MIT License | 5 votes |
def line_map(self, size, scale_x=1., scale_y=1., line_width=2.): if isinstance(size, tuple): lmap = np.zeros(size, dtype=np.uint8) else: lmap = np.zeros((size, size), dtype=np.uint8) for line_seg in self._line_segs: for ind_junc1, ind_junc2 in combinations(line_seg["junctions"], 2): x1, y1 = self._junctions[ind_junc1] x2, y2 = self._junctions[ind_junc2] x1, x2 = int(x1 * scale_x + 0.5), int(x2 * scale_x + 0.5) y1, y2 = int(y1 * scale_y + 0.5), int(y2 * scale_y + 0.5) lmap = cv2.line(lmap, (x1, y1), (x2, y2), 255, int(line_width), cv2.LINE_AA) # lmap = cv2.GaussianBlur(lmap, (int(line_width), int(line_width)), 1) # lmap[lmap > 1] = 1 return lmap
Example #23
Source File: part-6-lane-finder.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def process_img(image): original_image = image # convert to gray processed_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # edge detection processed_img = cv2.Canny(processed_img, threshold1 = 200, threshold2=300) processed_img = cv2.GaussianBlur(processed_img,(5,5),0) vertices = np.array([[10,500],[10,300],[300,200],[500,200],[800,300],[800,500], ], np.int32) processed_img = roi(processed_img, [vertices]) # more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/py_houghlines/py_houghlines.html # rho theta thresh min length, max gap: lines = cv2.HoughLinesP(processed_img, 1, np.pi/180, 180, 20, 15) try: l1, l2 = draw_lanes(original_image,lines) cv2.line(original_image, (l1[0], l1[1]), (l1[2], l1[3]), [0,255,0], 30) cv2.line(original_image, (l2[0], l2[1]), (l2[2], l2[3]), [0,255,0], 30) except Exception as e: print(str(e)) pass try: for coords in lines: coords = coords[0] try: cv2.line(processed_img, (coords[0], coords[1]), (coords[2], coords[3]), [255,0,0], 3) except Exception as e: print(str(e)) except Exception as e: pass return processed_img,original_image
Example #24
Source File: Preprocess.py From ALPR-Indonesia with MIT License | 5 votes |
def preprocess(imgOriginal): #coba = cv2.cvtColor(imgOriginal, cv2.COLOR_BGR2HSV) #cv2.imshow("hsv", coba ) imgGrayscale = extractValue(imgOriginal) #cv2.imshow("imgGrayscale", imgGrayscale ) imgGrayscale = np.invert(imgGrayscale) # last best use this #cv2.imshow("invert", imgGrayscale ) imgMaxContrastGrayscale = maximizeContrast(imgGrayscale) #cv2.imshow("imgMaxContrastGrayscale", imgMaxContrastGrayscale ) #imgMaxContrastGrayscale = np.invert(imgMaxContrastGrayscale) height, width = imgGrayscale.shape imgBlurred = np.zeros((height, width, 1), np.uint8) #cv2.imshow("c_3", imgBlurred ) imgBlurred = cv2.GaussianBlur(imgMaxContrastGrayscale, GAUSSIAN_SMOOTH_FILTER_SIZE, 0) #cv2.imshow("imgBlurred", imgBlurred ) #imgBlurred = np.invert(imgBlurred) imgThresh = cv2.adaptiveThreshold(imgBlurred, THRESHOLD_VALUE , cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, ADAPTIVE_THRESH_BLOCK_SIZE, ADAPTIVE_THRESH_WEIGHT) #imgThresh = np.invert(imgThresh) #cv2.imshow("cobaaa", imgThresh) return imgGrayscale, imgThresh # end function ###################################################################################################
Example #25
Source File: invert_imageData.py From ALPR-Indonesia with MIT License | 5 votes |
def main(): ap = argparse.ArgumentParser() ap.add_argument("-d", "--image_train", help = "path for the images that you're going to invert") args = vars(ap.parse_args()) if args.get("image", True): imgTrainingNumbers = cv2.imread(args["image_train"]) # read in training numbers image if imgTrainingNumbers is None: print "error: image not read from file \n\n" # print error message to std out os.system("pause") # pause so user can see error message return else: print("Please add -d or --image_train argument") imgGray = cv2.cvtColor(imgTrainingNumbers, cv2.COLOR_BGR2GRAY) # get grayscale image imgBlurred = cv2.GaussianBlur(imgGray, (5,5), 0) # blur # filter image from grayscale to black and white imgThresh = cv2.adaptiveThreshold(imgBlurred, # input image 0, # make pixels that pass the threshold full white cv2.ADAPTIVE_THRESH_GAUSSIAN_C, # use gaussian rather than mean, seems to give better results cv2.THRESH_BINARY_INV, # invert so foreground will be white, background will be black 11, # size of a pixel neighborhood used to calculate threshold value 2) # constant subtracted from the mean or weighted mean imgTrainingNumbers = np.invert(imgTrainingNumbers) cv2.imwrite("invert_"+args["image_train"],imgTrainingNumbers) cv2.imwrite("imgThresh_"+args["image_train"],imgThresh) return ###################################################################################################
Example #26
Source File: data_utils.py From conditional-motion-propagation with MIT License | 5 votes |
def get_edge(data, blur=False): if blur: data = cv2.GaussianBlur(data, (3, 3), 1.) sobel = np.array([[1,0,-1],[2,0,-2],[1,0,-1]]).astype(np.float32) ch_edges = [] for k in range(data.shape[2]): edgex = signal.convolve2d(data[:,:,k], sobel, boundary='symm', mode='same') edgey = signal.convolve2d(data[:,:,k], sobel.T, boundary='symm', mode='same') ch_edges.append(np.sqrt(edgex**2 + edgey**2)) return sum(ch_edges)
Example #27
Source File: mnist_helpers.py From mnist-helper with MIT License | 5 votes |
def prepare_test_image(image, width ,resize_shape, negated=False): """ This function normalizes an an already padded image and flattens it into a row vector :param image: the input image :type image: numpy nd array :param resize_shape: a tuple denoting the shape of the padded image :type resize_shape: tuple :param negated: a flag to know if the input image is a negated one :type negated: boolean :returns : a 1-D array """ # negate the image if not negated: image = 255-image # resizing the image resized_image = resize_img(image, resize_shape, negated=True) #resized_image = width_normalization(image, width, resize_shape, negated=True) # gaussian filtering resized_image = cv2.GaussianBlur(resized_image,(3,3), 0) # deskew #deskewed_image = deskew(resized_image, resize_shape) # normalize the image values to fit in the range [0,1] norm_image = numpy.asarray(resized_image, dtype=numpy.float32) / 255. # Flatten the image to a 1-D vector and return return norm_image.reshape(1, resize_shape[0] * resize_shape[1])
Example #28
Source File: transforms.py From VS-ReID with BSD 2-Clause "Simplified" License | 5 votes |
def blur(img, kenrel_size=(5, 5), sigma=(1e-6, 0.6)): img = cv2.GaussianBlur(img, kenrel_size, random.uniform(*sigma)) return img
Example #29
Source File: imutils.py From pytorch-cpn with GNU General Public License v3.0 | 5 votes |
def generate_heatmap(heatmap, pt, sigma): heatmap[int(pt[1])][int(pt[0])] = 1 heatmap = cv2.GaussianBlur(heatmap, sigma, 0) am = np.amax(heatmap) heatmap /= am / 255 return heatmap # ============================================================================= # Helpful display functions # =============================================================================
Example #30
Source File: dataset_utils.py From rpg_davis_simulator with GNU General Public License v3.0 | 5 votes |
def preprocess_image(img, use_log=True, blur_size=0): if blur_size > 0: img = cv2.GaussianBlur(img, (blur_size,blur_size), 0) if use_log: img = safe_log(img) return img