Python sklearn.naive_bayes.GaussianNB() Examples
The following are 30
code examples of sklearn.naive_bayes.GaussianNB().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.naive_bayes
, or try the search function
.
Example #1
Source File: hybrid_nb.py From Jacinle with MIT License | 6 votes |
def __init__(self, distributions, weights=None, **kwargs): self.models = [] for dist in distributions: dist = NaiveBayesianDistribution.from_string(dist) if dist is NaiveBayesianDistribution.GAUSSIAN: model = nb.GaussianNB(**kwargs) elif dist is NaiveBayesianDistribution.MULTINOMIAL: model = nb.MultinomialNB(**kwargs) elif dist is NaiveBayesianDistribution.BERNOULLI: model = nb.BernoulliNB(**kwargs) else: raise ValueError('Unknown distribution: {}.'.format(dist)) kwargs['fit_prior'] = False # Except the first model. self.models.append(model) self.weights = weights
Example #2
Source File: test_GaussianNB.py From differential-privacy-library with MIT License | 6 votes |
def test_different_results(self): from sklearn.naive_bayes import GaussianNB as sk_nb from sklearn import datasets global_seed(12345) dataset = datasets.load_iris() x_train, x_test, y_train, y_test = train_test_split(dataset.data, dataset.target, test_size=.2) bounds = ([4.3, 2.0, 1.0, 0.1], [7.9, 4.4, 6.9, 2.5]) clf_dp = GaussianNB(epsilon=1.0, bounds=bounds) clf_non_private = sk_nb() for clf in [clf_dp, clf_non_private]: clf.fit(x_train, y_train) same_prediction = clf_dp.predict(x_test) == clf_non_private.predict(x_test) self.assertFalse(np.all(same_prediction))
Example #3
Source File: testScoreWithAdapaSklearn.py From nyoka with Apache License 2.0 | 6 votes |
def test_24_gaussian_nb(self): print("\ntest 24 (GaussianNB with preprocessing) [multi-class]\n") X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification() model = GaussianNB() pipeline_obj = Pipeline([ ('scaler', StandardScaler()), ("model", model) ]) pipeline_obj.fit(X,y) file_name = 'test24sklearn.pmml' skl_to_pmml(pipeline_obj, features, target, file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file) model_pred = pipeline_obj.predict(X_test) model_prob = pipeline_obj.predict_proba(X_test) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #4
Source File: test_naive_bayes.py From dask-ml with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_smoke(): a = nb.GaussianNB() b = nb_.GaussianNB() a.fit(X, y) X_ = X.compute() y_ = y.compute() b.fit(X_, y_) assert_eq(a.class_prior_.compute(), b.class_prior_) assert_eq(a.class_count_.compute(), b.class_count_) assert_eq(a.theta_.compute(), b.theta_) assert_eq(a.sigma_.compute(), b.sigma_) assert_eq(a.predict_proba(X).compute(), b.predict_proba(X_)) assert_eq(a.predict(X).compute(), b.predict(X_)) assert_eq(a.predict_log_proba(X).compute(), b.predict_log_proba(X_))
Example #5
Source File: testScoreWithAdapaSklearn.py From nyoka with Apache License 2.0 | 6 votes |
def test_22_gaussian_nb(self): print("\ntest 22 (GaussianNB without preprocessing) [binary-class]\n") X, X_test, y, features, target, test_file = self.data_utility.get_data_for_binary_classification() model = GaussianNB() pipeline_obj = Pipeline([ ("model", model) ]) pipeline_obj.fit(X,y) file_name = 'test22sklearn.pmml' skl_to_pmml(pipeline_obj, features, target, file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file) model_pred = pipeline_obj.predict(X_test) model_prob = pipeline_obj.predict_proba(X_test) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #6
Source File: testScoreWithAdapaSklearn.py From nyoka with Apache License 2.0 | 6 votes |
def test_23_gaussian_nb(self): print("\ntest 23 (GaussianNB without preprocessing) [multi-class]\n") X, X_test, y, features, target, test_file = self.data_utility.get_data_for_multi_class_classification() model = GaussianNB() pipeline_obj = Pipeline([ ("model", model) ]) pipeline_obj.fit(X,y) file_name = 'test23sklearn.pmml' skl_to_pmml(pipeline_obj, features, target, file_name) model_name = self.adapa_utility.upload_to_zserver(file_name) predictions, probabilities = self.adapa_utility.score_in_zserver(model_name, test_file) model_pred = pipeline_obj.predict(X_test) model_prob = pipeline_obj.predict_proba(X_test) self.assertEqual(self.adapa_utility.compare_predictions(predictions, model_pred), True) self.assertEqual(self.adapa_utility.compare_probability(probabilities, model_prob), True)
Example #7
Source File: classifier.py From libfaceid with MIT License | 6 votes |
def __init__(self, classifier=FaceClassifierModels.DEFAULT): self._clf = None if classifier == FaceClassifierModels.LINEAR_SVM: self._clf = SVC(C=1.0, kernel="linear", probability=True) elif classifier == FaceClassifierModels.NAIVE_BAYES: self._clf = GaussianNB() elif classifier == FaceClassifierModels.RBF_SVM: self._clf = SVC(C=1, kernel='rbf', probability=True, gamma=2) elif classifier == FaceClassifierModels.NEAREST_NEIGHBORS: self._clf = KNeighborsClassifier(1) elif classifier == FaceClassifierModels.DECISION_TREE: self._clf = DecisionTreeClassifier(max_depth=5) elif classifier == FaceClassifierModels.RANDOM_FOREST: self._clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1) elif classifier == FaceClassifierModels.NEURAL_NET: self._clf = MLPClassifier(alpha=1) elif classifier == FaceClassifierModels.ADABOOST: self._clf = AdaBoostClassifier() elif classifier == FaceClassifierModels.QDA: self._clf = QuadraticDiscriminantAnalysis() print("classifier={}".format(FaceClassifierModels(classifier)))
Example #8
Source File: A10.SFA.py From Machine-Learning with MIT License | 6 votes |
def Faceidentifier( trainDataSimplified,trainLabel,testDataSimplified,testLabel): #three different kinds of classifers print("=====================================") print("GaussianNB") clf1 = GaussianNB() clf1.fit(trainDataSimplified,np.ravel(trainLabel)) predictTestLabel1 = clf1.predict(testDataSimplified) show_accuracy(predictTestLabel1,testLabel) print() print("SVC") clf3 = SVC(C=8.0) clf3.fit(trainDataSimplified,np.ravel(trainLabel)) predictTestLabel3 = clf3.predict(testDataSimplified) show_accuracy(predictTestLabel3,testLabel) print() print("LogisticRegression") clf4 = LogisticRegression() clf4.fit(trainDataSimplified,np.ravel(trainLabel)) predictTestLabel4 = clf4.predict(testDataSimplified) show_accuracy(predictTestLabel4,testLabel) print() print("=====================================")
Example #9
Source File: tests_classification.py From discomll with Apache License 2.0 | 6 votes |
def test_naivebayes_breastcancer_cont(self): # python -m unittest tests_classification.Tests_Classification.test_naivebayes_breastcancer_cont from sklearn.naive_bayes import GaussianNB from discomll.classification import naivebayes x_train, y_train, x_test, y_test = datasets.breastcancer_cont(replication=1) train_data, test_data = datasets.breastcancer_cont_discomll(replication=1) clf = GaussianNB() probs_log1 = clf.fit(x_train, y_train).predict_proba(x_test) fitmodel_url = naivebayes.fit(train_data) prediction_url = naivebayes.predict(test_data, fitmodel_url) probs_log2 = [v[1] for _, v in result_iterator(prediction_url)] self.assertTrue(np.allclose(probs_log1, probs_log2, atol=1e-8))
Example #10
Source File: test_partition.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def get_labelpowerset_with_nb(self): return LabelPowerset(classifier=GaussianNB(), require_dense=[True, True])
Example #11
Source File: test_rakeld.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def get_rakeld_with_nb(self): return RakelD( base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=TEST_LABELSET_SIZE )
Example #12
Source File: test_rakelo.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def get_rakeld_with_nb(self): return RakelO( base_classifier=GaussianNB(), base_classifier_require_dense=[True, True], labelset_size=TEST_LABELSET_SIZE, model_count=TEST_MODEL_COUNT )
Example #13
Source File: test_br.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def test_if_works_with_cross_validation(self): classifier = BinaryRelevance( classifier=GaussianNB(), require_dense=[True, True]) self.assertClassifierWorksWithCV(classifier)
Example #14
Source File: preprocessing_surf.py From Indian-Sign-Language-Recognition with MIT License | 5 votes |
def predict_nb(X_train, X_test, y_train, y_test): clf = nb() print("nb started") clf.fit(X_train,y_train) y_pred=clf.predict(X_test) calc_accuracy("Naive Bayes",y_test,y_pred) np.savetxt('submission_surf_nb.csv', np.c_[range(1,len(y_test)+1),y_pred,y_test], delimiter=',', header = 'ImageId,Label,TrueLabel', comments = '', fmt='%d')
Example #15
Source File: preprocessing_orb.py From Indian-Sign-Language-Recognition with MIT License | 5 votes |
def predict_nb(X_train, X_test, y_train, y_test): clf = nb() print("nb started") clf.fit(X_train,y_train) y_pred=clf.predict(X_test) calc_accuracy("Naive Bayes",y_test,y_pred)
Example #16
Source File: rscls.py From Remote-Sensing-Image-Classification with MIT License | 5 votes |
def GNB(trainx,trainy): clf = GaussianNB() p = clf.fit(trainx, trainy) return p
Example #17
Source File: rscls.py From Remote-Sensing-Image-Classification with MIT License | 5 votes |
def GNB(trainx,trainy): clf = GaussianNB() p = clf.fit(trainx, trainy) return p
Example #18
Source File: test_codec.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def test_GaussianNB(self): GaussianNB_Algo.register_codecs() self.classifier_util(GaussianNB)
Example #19
Source File: GaussianNB.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def __init__(self, options): self.handle_options(options) self.estimator = _GaussianNB()
Example #20
Source File: rscls.py From Double-Branch-Dual-Attention-Mechanism-Network with GNU Affero General Public License v3.0 | 5 votes |
def GNB(trainx, trainy): clf = GaussianNB() p = clf.fit(trainx, trainy) return p
Example #21
Source File: rscls.py From Double-Branch-Dual-Attention-Mechanism-Network with GNU Affero General Public License v3.0 | 5 votes |
def GNB(trainx, trainy): clf = GaussianNB() p = clf.fit(trainx, trainy) return p
Example #22
Source File: rscls.py From Double-Branch-Dual-Attention-Mechanism-Network with GNU Affero General Public License v3.0 | 5 votes |
def GNB(trainx, trainy): clf = GaussianNB() p = clf.fit(trainx, trainy) return p
Example #23
Source File: sentiment_ensemble.py From textlytics with MIT License | 5 votes |
def sentiment_ensemble_lexi_ml(self, lexicon_predictions, ml_predictions, classifiers={'GaussianNB': GaussianNB()}, n_folds=2): """ Fusion classification for s analysis :type lexicon_predictions: dict with lexicon name as keys and lists of predicted values as values :type ml_predictions: dict with classifiers name as keys and lists of predicted values as values :type classifiers: dict with name of classifier and classifier object :return: dict with measures and time for supervised learning process """ ensemble_features = self.features_array(lexicon_predictions.values(), ml_predictions.values()) self.feature_set = ensemble_features # temp_X = self.feature_set.T s = Sentiment() # print self.classes predictions = s.sentiment_classification( # X=self.feature_set, X=self.feature_set.T, # X=self.feature_set, y=self.classes, n_folds=n_folds, classifiers=classifiers) # print '+++++++++++++++++++++++ After ensemble +++++++++++++++++' # print # pprint(s.results) # TODO dodac predictions do results return s.results
Example #24
Source File: classifiercobra.py From pycobra with MIT License | 5 votes |
def load_default(self, machine_list='basic'): """ Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. As of current release SGD algorithm is not included in the advanced list. Parameters ---------- machine_list: optional, list of strings List of default machine names to be loaded. Returns ------- self : returns an instance of self. """ if machine_list == 'basic': machine_list = ['sgd', 'tree', 'knn', 'svm'] if machine_list == 'advanced': machine_list = ['tree', 'knn', 'svm', 'logreg', 'naive_bayes', 'lda', 'neural_network'] for machine in machine_list: try: if machine == 'svm': self.estimators_['svm'] = svm.SVC().fit(self.X_k_, self.y_k_) if machine == 'knn': self.estimators_['knn'] = neighbors.KNeighborsClassifier().fit(self.X_k_, self.y_k_) if machine == 'tree': self.estimators_['tree'] = tree.DecisionTreeClassifier().fit(self.X_k_, self.y_k_) if machine == 'logreg': self.estimators_['logreg'] = LogisticRegression(random_state=self.random_state).fit(self.X_k_, self.y_k_) if machine == 'naive_bayes': self.estimators_['naive_bayes'] = GaussianNB().fit(self.X_k_, self.y_k_) if machine == 'lda': self.estimators_['lda'] = LinearDiscriminantAnalysis().fit(self.X_k_, self.y_k_) if machine == 'neural_network': self.estimators_['neural_network'] = MLPClassifier(random_state=self.random_state).fit(self.X_k_, self.y_k_) except ValueError: continue return self
Example #25
Source File: export_tests.py From tpot with GNU Lesser General Public License v3.0 | 5 votes |
def test_generate_import_code(): """Assert that generate_import_code() returns the correct set of dependancies for a given pipeline.""" pipeline = creator.Individual.from_string('GaussianNB(RobustScaler(input_matrix))', tpot_obj._pset) expected_code = """import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler """ assert expected_code == generate_import_code(pipeline, tpot_obj.operators)
Example #26
Source File: test_cc.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def test_if_order_is_set_when_explicitly_given(self): X, y = self.get_multilabel_data_for_tests(sparsity_indicator='sparse')[0] reversed_chain = list(reversed(range(y.shape[1]))) classifier = ClassifierChain( classifier=GaussianNB(), require_dense=[True, True], order=reversed_chain ) classifier.fit(X, y) self.assertEqual(classifier._order(), reversed_chain)
Example #27
Source File: export_tests.py From tpot with GNU Lesser General Public License v3.0 | 5 votes |
def test_generate_pipeline_code(): """Assert that generate_pipeline_code() returns the correct code given a specific pipeline.""" tpot_obj._fit_init() pipeline = [ 'KNeighborsClassifier', [ 'CombineDFs', [ 'GradientBoostingClassifier', 'input_matrix', 38.0, 5, 5, 5, 0.05, 0.5], [ 'GaussianNB', [ 'ZeroCount', 'input_matrix' ] ] ], 18, 'uniform', 2 ] expected_code = """make_pipeline( make_union( StackingEstimator(estimator=GradientBoostingClassifier(learning_rate=38.0, max_depth=5, max_features=5, min_samples_leaf=5, min_samples_split=0.05, n_estimators=0.5)), StackingEstimator(estimator=make_pipeline( ZeroCount(), GaussianNB() )) ), KNeighborsClassifier(n_neighbors=18, p="uniform", weights=2) )""" assert expected_code == generate_pipeline_code(pipeline, tpot_obj.operators)
Example #28
Source File: Pipeline.py From VDiscover with GNU General Public License v3.0 | 5 votes |
def makeTrainPipelineBOW(ftype): if ftype is "dynamic": realpath = os.path.dirname(os.path.realpath(__file__)) f = open(realpath + "/data/dyn_events.dic") event_dict = [] for line in f.readlines(): event_dict.append(line.replace("\n", "")) return Pipeline(steps=[ ('selector', ItemSelector(key='dynamic')), ('dvectorizer', CountVectorizer(tokenizer=dynamicTokenizer, ngram_range=(1, 3), lowercase=False, vocabulary=event_dict)), ('todense', DenseTransformer()), ('cutfoff', CutoffMax(16)), ('classifier', RandomForestClassifier( n_estimators=1000, max_features=None, max_depth=100)) #('classifier', GaussianNB()) ]) elif ftype is "static": return Pipeline(steps=[ ('selector', ItemSelector(key='static')), ('dvectorizer', CountVectorizer( tokenizer=static_tokenizer, ngram_range=(1, 1), lowercase=False)), ('todense', DenseTransformer()), ('classifier', LogisticRegression(penalty="l2", C=1e-07, tol=1e-06)) ]) else: assert(0)
Example #29
Source File: gaussian_nb.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, priors=None, var_smoothing=1e-09): self._hyperparams = { 'priors': priors, 'var_smoothing': var_smoothing} self._wrapped_model = Op(**self._hyperparams)
Example #30
Source File: classification.py From Indian-Sign-Language-Recognition with MIT License | 5 votes |
def run_nb(): clf = nb() print("nb started") clf.fit(x,y) #print(clf.classes_) #print clf.n_layers_ pred=clf.predict(x_) #print(pred) np.savetxt('submission_nb.csv', np.c_[range(1,len(test)+1),pred,label_test], delimiter=',', header = 'ImageId,Label,TrueLabel', comments = '', fmt='%d') calc_accuracy("Naive Bayes",label_test,pred)