Python matplotlib.pyplot.colorbar() Examples
The following are 30
code examples of matplotlib.pyplot.colorbar().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: NavierStokes.py From PINNs with MIT License | 7 votes |
def plot_solution(X_star, u_star, index): lb = X_star.min(0) ub = X_star.max(0) nn = 200 x = np.linspace(lb[0], ub[0], nn) y = np.linspace(lb[1], ub[1], nn) X, Y = np.meshgrid(x,y) U_star = griddata(X_star, u_star.flatten(), (X, Y), method='cubic') plt.figure(index) plt.pcolor(X,Y,U_star, cmap = 'jet') plt.colorbar()
Example #2
Source File: visualise_att_maps_epoch.py From Attention-Gated-Networks with MIT License | 7 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Epochs
Example #3
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title='', alpha=0.8): plt.ion() filters = units.shape[2] fig = plt.figure(figure_id, figsize=(5,5)) fig.clf() for i in range(filters): plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray') plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha) plt.axis('off') plt.colorbar() plt.title(title, fontsize='small') if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # plt.savefig('{}/{}.png'.format(dir_name,time.time())) ## Load options
Example #4
Source File: visualise_fmaps.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Load options
Example #5
Source File: core.py From prickle with MIT License | 6 votes |
def imshow(data, which, levels): """ Display order book data as an image, where order book data is either of `df_price` or `df_volume` returned by `load_hdf5` or `load_postgres`. """ if which == 'prices': idx = ['askprc.' + str(i) for i in range(levels, 0, -1)] idx.extend(['bidprc.' + str(i) for i in range(1, levels + 1, 1)]) elif which == 'volumes': idx = ['askvol.' + str(i) for i in range(levels, 0, -1)] idx.extend(['bidvol.' + str(i) for i in range(1, levels + 1, 1)]) plt.imshow(data.loc[:, idx].T, interpolation='nearest', aspect='auto') plt.yticks(range(0, levels * 2, 1), idx) plt.colorbar() plt.tight_layout() plt.show()
Example #6
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() plt.suptitle(title)
Example #7
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_interpolate_grid_elmdata_dicontinuous(self, sphere3_msh): data = sphere3_msh.elm.tag1 f = mesh_io.ElementData(data, mesh=sphere3_msh) n = (200, 130, 1) affine = np.array([[1, 0, 0, -100.1], [0,-1, 0, 65.1], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) interp = f.interpolate_to_grid(n, affine, method='linear', continuous=False) ''' import matplotlib.pyplot as plt plt.figure() plt.imshow(np.squeeze(interp)) plt.colorbar() plt.show() ''' assert np.allclose(interp[6:10, 65, 0], 5, atol=1e-1) assert np.allclose(interp[11:15, 65, 0], 4, atol=1e-1) assert np.allclose(interp[16:100, 65, 0], 3, atol=1e-1)
Example #8
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_interpolate_grid_elmdata_linear(self, sphere3_msh): data = sphere3_msh.elements_baricenters().value[:, 0] f = mesh_io.ElementData(data, mesh=sphere3_msh) n = (130, 130, 1) affine = np.array([[1, 0, 0, -65], [0, 1, 0, -65], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) X, _ = np.meshgrid(np.arange(130), np.arange(130), indexing='ij') interp = f.interpolate_to_grid(n, affine, method='linear', continuous=True) ''' import matplotlib.pyplot as plt plt.figure() plt.imshow(np.squeeze(interp)) plt.colorbar() plt.show() ''' assert np.allclose(interp[:, :, 0], X - 64.5, atol=1)
Example #9
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_interpolate_grid_rotate_nodedata(self, sphere3_msh): data = np.zeros(sphere3_msh.nodes.nr) b = sphere3_msh.nodes.node_coord.copy() f = mesh_io.NodeData(data, mesh=sphere3_msh) # Assign quadrant numbers f.value[(b[:, 0] >= 0) * (b[:, 1] >= 0)] = 1. f.value[(b[:, 0] <= 0) * (b[:, 1] >= 0)] = 2. f.value[(b[:, 0] <= 0) * (b[:, 1] <= 0)] = 3. f.value[(b[:, 0] >= 0) * (b[:, 1] <= 0)] = 4. n = (200, 200, 1) affine = np.array([[np.cos(np.pi/4.), np.sin(np.pi/4.), 0, -141], [-np.sin(np.pi/4.), np.cos(np.pi/4.), 0, 0], [0, 0, 1, .5], [0, 0, 0, 1]], dtype=float) interp = f.interpolate_to_grid(n, affine) ''' import matplotlib.pyplot as plt plt.imshow(np.squeeze(interp), interpolation='nearest') plt.colorbar() plt.show() ''' assert np.isclose(interp[190, 100, 0], 4) assert np.isclose(interp[100, 190, 0], 1) assert np.isclose(interp[10, 100, 0], 2) assert np.isclose(interp[100, 10, 0], 3)
Example #10
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_interpolate_grid_rotate_nn(self, sphere3_msh): data = np.zeros(sphere3_msh.elm.nr) b = sphere3_msh.elements_baricenters().value f = mesh_io.ElementData(data, mesh=sphere3_msh) # Assign quadrant numbers f.value[(b[:, 0] > 0) * (b[:, 1] > 0)] = 1. f.value[(b[:, 0] < 0) * (b[:, 1] > 0)] = 2. f.value[(b[:, 0] < 0) * (b[:, 1] < 0)] = 3. f.value[(b[:, 0] > 0) * (b[:, 1] < 0)] = 4. n = (200, 200, 1) affine = np.array([[np.cos(np.pi/4.), np.sin(np.pi/4.), 0, -141], [-np.sin(np.pi/4.), np.cos(np.pi/4.), 0, 0], [0, 0, 1, .5], [0, 0, 0, 1]], dtype=float) interp = f.interpolate_to_grid(n, affine, method='assign') ''' import matplotlib.pyplot as plt plt.imshow(np.squeeze(interp)) plt.colorbar() plt.show() ''' assert np.isclose(interp[190, 100, 0], 4) assert np.isclose(interp[100, 190, 0], 1) assert np.isclose(interp[10, 100, 0], 2) assert np.isclose(interp[100, 10, 0], 3)
Example #11
Source File: test_mesh_io.py From simnibs with GNU General Public License v3.0 | 6 votes |
def test_interpolate_grid_const_nn(self, sphere3_msh): data = sphere3_msh.elm.tag1 f = mesh_io.ElementData(data, mesh=sphere3_msh) n = (200, 10, 1) affine = np.array([[1, 0, 0, -100.5], [0, 1, 0, -5], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=float) interp = f.interpolate_to_grid(n, affine, method='assign') ''' import matplotlib.pyplot as plt plt.imshow(np.squeeze(interp)) plt.colorbar() plt.show() assert False ''' assert np.isclose(interp[100, 5, 0], 3) assert np.isclose(interp[187, 5, 0], 4) assert np.isclose(interp[193, 5, 0], 5) assert np.isclose(interp[198, 5, 0], 0)
Example #12
Source File: pixel.py From yatsm with MIT License | 6 votes |
def plot_DOY(dates, y, mpl_cmap): """ Create a DOY plot Args: dates (iterable): sequence of datetime y (np.ndarray): variable to plot mpl_cmap (colormap): matplotlib colormap """ doy = np.array([d.timetuple().tm_yday for d in dates]) year = np.array([d.year for d in dates]) sp = plt.scatter(doy, y, c=year, cmap=mpl_cmap, marker='o', edgecolors='none', s=35) plt.colorbar(sp) months = mpl.dates.MonthLocator() # every month months_fmrt = mpl.dates.DateFormatter('%b') plt.tick_params(axis='x', which='minor', direction='in', pad=-10) plt.axes().xaxis.set_minor_locator(months) plt.axes().xaxis.set_minor_formatter(months_fmrt) plt.xlim(1, 366) plt.xlabel('Day of Year')
Example #13
Source File: pixel.py From yatsm with MIT License | 6 votes |
def plot_VAL(dates, y, mpl_cmap, reps=2): """ Create a "Valerie Pasquarella" plot (repeated DOY plot) Args: dates (iterable): sequence of datetime y (np.ndarray): variable to plot mpl_cmap (colormap): matplotlib colormap reps (int, optional): number of additional repetitions """ doy = np.array([d.timetuple().tm_yday for d in dates]) year = np.array([d.year for d in dates]) # Replicate `reps` times _doy = doy.copy() for r in range(1, reps + 1): _doy = np.concatenate((_doy, doy + r * 366)) _year = np.tile(year, reps + 1) _y = np.tile(y, reps + 1) sp = plt.scatter(_doy, _y, c=_year, cmap=mpl_cmap, marker='o', edgecolors='none', s=35) plt.colorbar(sp) plt.xlabel('Day of Year')
Example #14
Source File: prod_basis.py From pyscf with Apache License 2.0 | 6 votes |
def generate_png_chess_dp_vertex(self): """Produces pictures of the dominant product vertex a chessboard convention""" import matplotlib.pylab as plt plt.ioff() dab2v = self.get_dp_vertex_doubly_sparse() for i, ab in enumerate(dab2v): fname = "chess-v-{:06d}.png".format(i) print('Matrix No.#{}, Size: {}, Type: {}'.format(i+1, ab.shape, type(ab)), fname) if type(ab) != 'numpy.ndarray': ab = ab.toarray() fig = plt.figure() ax = fig.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(ab, interpolation='nearest', cmap=plt.cm.ocean) plt.colorbar() plt.savefig(fname) plt.close(fig)
Example #15
Source File: plotting.py From qb with MIT License | 6 votes |
def plot_confusion(title, true_labels, predicted_labels, normalized=True): labels = list(set(true_labels) | set(predicted_labels)) if normalized: cm = confusion_matrix(true_labels, predicted_labels, labels=labels) cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] else: cm = confusion_matrix(true_labels, predicted_labels, labels=labels) fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) ax.set_title(title) # plt.colorbar() tick_marks = np.arange(len(labels)) ax.set_xticks(tick_marks) ax.set_xticklabels(labels, rotation=90) ax.set_yticks(tick_marks) ax.set_yticklabels(labels) ax.set_ylabel('True Label') ax.set_xlabel('Predicted Label') ax.grid(False) return fig, ax
Example #16
Source File: plot.py From TaskBot with GNU General Public License v3.0 | 6 votes |
def plot_attention(sentences, attentions, labels, **kwargs): fig, ax = plt.subplots(**kwargs) im = ax.imshow(attentions, interpolation='nearest', vmin=attentions.min(), vmax=attentions.max()) plt.colorbar(im, shrink=0.5, ticks=[0, 1]) plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") ax.set_yticks(range(len(labels))) ax.set_yticklabels(labels, fontproperties=getChineseFont()) # Loop over data dimensions and create text annotations. for i in range(attentions.shape[0]): for j in range(attentions.shape[1]): text = ax.text(j, i, sentences[i][j], ha="center", va="center", color="b", size=10, fontproperties=getChineseFont()) ax.set_title("Attention Visual") fig.tight_layout() plt.show()
Example #17
Source File: ephys_qc_raw.py From ibllib with MIT License | 6 votes |
def _plot_rmsmap(outfil, typ, savefig=True): rmsmap = alf.io.load_object(outpath, '_iblqc_ephysTimeRms' + typ.upper()) plt.figure(figsize=[12, 4.5]) axim = plt.axes([0.2, 0.1, 0.7, 0.8]) axrms = plt.axes([0.05, 0.1, 0.15, 0.8]) axcb = plt.axes([0.92, 0.1, 0.02, 0.8]) axrms.plot(np.median(rmsmap['rms'], axis=0)[:-1] * 1e6, np.arange(1, rmsmap['rms'].shape[1])) axrms.set_ylim(0, rmsmap['rms'].shape[1]) im = axim.imshow(20 * np.log10(rmsmap['rms'].T + 1e-15), aspect='auto', origin='lower', extent=[rmsmap['timestamps'][0], rmsmap['timestamps'][-1], 0, rmsmap['rms'].shape[1]]) axim.set_xlabel(r'Time (s)') axim.set_ylabel(r'Channel Number') plt.colorbar(im, cax=axcb) if typ == 'ap': im.set_clim(-110, -90) axrms.set_xlim(100, 0) elif typ == 'lf': im.set_clim(-100, -60) axrms.set_xlim(500, 0) axim.set_xlim(0, 4000) if savefig: plt.savefig(outpath / (typ + '_rms.png'), dpi=150)
Example #18
Source File: preprocessing.py From Geocoding-with-Map-Vector with GNU General Public License v3.0 | 6 votes |
def visualise_2D_grid(x, title, log=False): """ Display 2D array data with a title. Optional: log for better visualisation of small values. :param x: 2D numpy array you want to visualise :param title: of the chart because it's nice to have one :-) :param log: True in order to log the values and make for better visualisation, False for raw numbers """ if log: x = np.log10(x) cmap = colors.LinearSegmentedColormap.from_list('my_colormap', ['lightgrey', 'darkgrey', 'dimgrey', 'black']) cmap.set_bad(color='white') img = pyplot.imshow(x, cmap=cmap, interpolation='nearest') pyplot.colorbar(img, cmap=cmap) plt.title(title) # plt.savefig(title + u".png", dpi=200, transparent=True) # Uncomment to save to file plt.show()
Example #19
Source File: dataset.py From neural-combinatorial-optimization-rl-tensorflow with MIT License | 6 votes |
def visualize_sampling(self, permutations): max_length = len(permutations[0]) grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0 transposed_permutations = np.transpose(permutations) for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t city_indices, counts = np.unique(cities_t,return_counts=True,axis=0) for u,v in zip(city_indices, counts): grid[t][u]+=v # update grid with counts from the batch of permutations # plot heatmap fig = plt.figure() rcParams.update({'font.size': 22}) ax = fig.add_subplot(1,1,1) ax.set_aspect('equal') plt.imshow(grid, interpolation='nearest', cmap='gray') plt.colorbar() plt.title('Sampled permutations') plt.ylabel('Time t') plt.xlabel('City i') plt.show()
Example #20
Source File: visualizer.py From face_classification with MIT License | 5 votes |
def pretty_imshow(axis, data, vmin=None, vmax=None, cmap=None): if cmap is None: cmap = cm.jet if vmin is None: vmin = data.min() if vmax is None: vmax = data.max() cax = None divider = make_axes_locatable(axis) cax = divider.append_axes('right', size='5%', pad=0.05) image = axis.imshow(data, vmin=vmin, vmax=vmax, interpolation='nearest', cmap=cmap) plt.colorbar(image, cax=cax)
Example #21
Source File: NavierStokes.py From DeepHPMs with MIT License | 5 votes |
def plot_solution(X_data, w_data, index): lb = X_data.min(0) ub = X_data.max(0) nn = 200 x = np.linspace(lb[0], ub[0], nn) y = np.linspace(lb[1], ub[1], nn) X, Y = np.meshgrid(x,y) W_data = griddata(X_data, w_data.flatten(), (X, Y), method='cubic') plt.figure(index) plt.pcolor(X,Y,W_data, cmap = 'jet') plt.colorbar()
Example #22
Source File: viz.py From dgl with Apache License 2.0 | 5 votes |
def att_animation(maps_array, mode, src, tgt, head_id): weights = [maps[mode2id[mode]][head_id] for maps in maps_array] fig, axes = plt.subplots(1, 2) def weight_animate(i): global colorbar if colorbar: colorbar.remove() plt.cla() axes[0].set_title('heatmap') axes[0].set_yticks(np.arange(len(src))) axes[0].set_xticks(np.arange(len(tgt))) axes[0].set_yticklabels(src) axes[0].set_xticklabels(tgt) plt.setp(axes[0].get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") fig.suptitle('epoch {}'.format(i)) weight = weights[i].transpose(-1, -2) heatmap = axes[0].pcolor(weight, vmin=0, vmax=1, cmap=plt.cm.Blues) colorbar = plt.colorbar(heatmap, ax=axes[0], fraction=0.046, pad=0.04) axes[0].set_aspect('equal') axes[1].axis("off") graph_att_head(src, tgt, weight, axes[1], 'graph') ani = animation.FuncAnimation(fig, weight_animate, frames=len(weights), interval=500, repeat_delay=2000) return ani
Example #23
Source File: analyze.py From Car-Recognition with MIT License | 5 votes |
def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() # tick_marks = np.arange(len(classes)) # plt.xticks(tick_marks, classes, rotation=45) # plt.yticks(tick_marks, classes) # fmt = '.2f' if normalize else 'd' # thresh = cm.max() / 2. # for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i, format(cm[i, j], fmt), # horizontalalignment="center", # color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label')
Example #24
Source File: heatmap.py From python-wifi-survey-heatmap with GNU Affero General Public License v3.0 | 5 votes |
def _plot(self, a, key, title, gx, gy, num_x, num_y): pp.rcParams['figure.figsize'] = ( self._image_width / 300, self._image_height / 300 ) pp.title(title) # Interpolate the data rbf = Rbf( a['x'], a['y'], a[key], function='linear' ) z = rbf(gx, gy) z = z.reshape((num_y, num_x)) # Render the interpolated data to the plot pp.axis('off') # begin color mapping norm = matplotlib.colors.Normalize( vmin=min(a[key]), vmax=max(a[key]), clip=True ) mapper = cm.ScalarMappable(norm=norm, cmap='RdYlBu_r') # end color mapping image = pp.imshow( z, extent=(0, self._image_width, self._image_height, 0), cmap='RdYlBu_r', alpha=0.5, zorder=100 ) pp.colorbar(image) pp.imshow(self._layout, interpolation='bicubic', zorder=1, alpha=1) # begin plotting points for idx in range(0, len(a['x'])): pp.plot( a['x'][idx], a['y'][idx], marker='o', markeredgecolor='black', markeredgewidth=1, markerfacecolor=mapper.to_rgba(a[key][idx]), markersize=6 ) # end plotting points fname = '%s_%s.png' % (key, self._title) logger.info('Writing plot to: %s', fname) pp.savefig(fname, dpi=300) pp.close('all')
Example #25
Source File: PlottingRaster.py From LSDMappingTools with MIT License | 5 votes |
def add_point_colourbar(self,ax_list,sc,cmap = "cubehelix",colorbarlabel = "Colourbar", discrete=False, n_colours=10, cbar_type=float): """ This adds a colourbar for any points that are on the DEM. Args: ax_list: The list of axes objects. Assumes colourbar is in axis_list[-1] sc: The scatterplot object. Generated by plt.scatter cmap (string or colourmap): The colourmap. colorbarlabel (string): The label of the colourbar Author: SMM """ fig = matplotlib.pyplot.gcf() ax_list.append(fig.add_axes([0.1,0.8,0.2,0.5])) cbar = plt.colorbar(sc,cmap=cmap, orientation=self.colourbar_orientation,cax=ax_list[-1]) if self.colourbar_location == 'top': ax_list[-1].set_xlabel(colorbarlabel, fontname='Liberation Sans',labelpad=5) elif self.colourbar_location == 'bottom': ax_list[-1].set_xlabel(colorbarlabel, fontname='Liberation Sans',labelpad=5) elif self.colourbar_location == 'left': ax_list[-1].set_ylabel(colorbarlabel, fontname='Liberation Sans',labelpad=-75,rotation=90) elif self.colourbar_location == 'right': ax_list[-1].set_ylabel(colorbarlabel, fontname='Liberation Sans',labelpad=10,rotation=270) return ax_list
Example #26
Source File: colours.py From LSDMappingTools with MIT License | 5 votes |
def colorbar_index(fig, cax, ncolors, cmap, drape_min_threshold, drape_max): """State-machine like function that creates a discrete colormap and plots it on a figure that is passed as an argument. Arguments: fig (matplotlib.Figure): Instance of a matplotlib figure object. cax (matplotlib.Axes): Axes instance to create the colourbar from. This must be the Axes containing the data that your colourbar will be mapped from. ncolors (int): The number of colours in the discrete colourbar map. cmap (str or Colormap object): Either the name of a matplotlib colormap, or an object instance of the colormap, e.g. cm.jet drape_min_threshold (float): Number setting the threshold level of the drape raster This should match any threshold you have set to mask the drape/overlay raster. drape_max (float): Similar to above, but for the upper threshold of your drape mask. """ discrete_cmap = discrete_colourmap(ncolors, cmap) mappable = _cm.ScalarMappable(cmap=discrete_cmap) mappable.set_array([]) #mappable.set_clim(-0.5, ncolors + 0.5) mappable.set_clim(drape_min_threshold, drape_max) print(type(fig)) print(type(mappable)) print(type(cax)) print() cbar = _plt.colorbar(mappable, cax=cax) #switched from fig to plt to expose the labeling params print(type(cbar)) #cbar.set_ticks(_np.linspace(0, ncolors, ncolors)) pad = ((ncolors - 1) / ncolors) / 2 # Move labels to center of bars. cbar.set_ticks(_np.linspace(drape_min_threshold + pad, drape_max - pad, ncolors)) return cbar # Generate random colormap
Example #27
Source File: network.py From psst with MIT License | 5 votes |
def plot_line_power(obj, results, hour, ax=None): ''' obj: case or network ''' if ax is None: fig, ax = plt.subplots(1, 1, figsize=(16, 10)) ax.axis('off') case, network = _return_case_network(obj) network.draw_buses(ax=ax) network.draw_loads(ax=ax) network.draw_generators(ax=ax) network.draw_connections('gen_to_bus', ax=ax) network.draw_connections('load_to_bus', ax=ax) edgelist, edge_color, edge_width, edge_labels = _generate_edges(results, case, hour) branches = network.draw_branches(ax=ax, edgelist=edgelist, edge_color=edge_color, width=edge_width, edge_labels=edge_labels) divider = make_axes_locatable(ax) cax = divider.append_axes('right', size='5%', pad=0.05) cb = plt.colorbar(branches, cax=cax, orientation='vertical') cax.yaxis.set_label_position('left') cax.yaxis.set_ticks_position('left') cb.set_label('Loading Factor') return ax
Example #28
Source File: c_tebd.py From tenpy with GNU General Public License v3.0 | 5 votes |
def example_TEBD_tf_ising_lightcone(L, g, tmax, dt): print("finite TEBD, real time evolution, transverse field Ising") print("L={L:d}, g={g:.2f}, tmax={tmax:.2f}, dt={dt:.3f}".format(L=L, g=g, tmax=tmax, dt=dt)) # find ground state with TEBD or DMRG # E, psi, M = example_TEBD_gs_tf_ising_finite(L, g) from d_dmrg import example_DMRG_tf_ising_finite E, psi, M = example_DMRG_tf_ising_finite(L, g) i0 = L // 2 # apply sigmaz on site i0 SzB = np.tensordot(M.sigmaz, psi.Bs[i0], axes=[1, 1]) # i [i*], vL [i] vR psi.Bs[i0] = np.transpose(SzB, [1, 0, 2]) # vL i vR U_bonds = calc_U_bonds(M.H_bonds, 1.j * dt) # (imaginary dt -> realtime evolution) S = [psi.entanglement_entropy()] Nsteps = int(tmax / dt + 0.5) for n in range(Nsteps): if abs((n * dt + 0.1) % 0.2 - 0.1) < 1.e-10: print("t = {t:.2f}, chi =".format(t=n * dt), psi.get_chi()) run_TEBD(psi, U_bonds, 1, chi_max=50, eps=1.e-10) S.append(psi.entanglement_entropy()) import matplotlib.pyplot as plt plt.figure() plt.imshow(S[::-1], vmin=0., aspect='auto', interpolation='nearest', extent=(0, L - 1., -0.5 * dt, (Nsteps + 0.5) * dt)) plt.xlabel('site $i$') plt.ylabel('time $t/J$') plt.ylim(0., tmax) plt.colorbar().set_label('entropy $S$') filename = 'c_tebd_lightcone_{g:.2f}.pdf'.format(g=g) plt.savefig(filename) print("saved " + filename)
Example #29
Source File: utils_image.py From KAIR with MIT License | 5 votes |
def imshow(x, title=None, cbar=False, figsize=None): plt.figure(figsize=figsize) plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') if title: plt.title(title) if cbar: plt.colorbar() plt.show()
Example #30
Source File: utils.py From sklearn-audio-transfer-learning with ISC License | 5 votes |
def matrix_visualization(matrix,title=None): """ Visualize 2D matrices like spectrograms or feature maps. """ plt.figure() plt.imshow(np.flipud(matrix.T),interpolation=None) plt.colorbar() if title!=None: plt.title(title) plt.show()