Python matplotlib.pyplot.clim() Examples
The following are 15
code examples of matplotlib.pyplot.clim().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.pyplot
, or try the search function
.
Example #1
Source File: visualise_att_maps_epoch.py From Attention-Gated-Networks with MIT License | 7 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Epochs
Example #2
Source File: visualise_fmaps.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # Load options
Example #3
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''): plt.ion() filters = units.shape[2] n_columns = round(math.sqrt(filters)) n_rows = math.ceil(filters / n_columns) + 1 fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3)) fig.clf() for i in range(filters): ax1 = plt.subplot(n_rows, n_columns, i+1) plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap) plt.axis('on') ax1.set_xticklabels([]) ax1.set_yticklabels([]) plt.colorbar() if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() plt.suptitle(title)
Example #4
Source File: visualise_attention.py From Attention-Gated-Networks with MIT License | 6 votes |
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title='', alpha=0.8): plt.ion() filters = units.shape[2] fig = plt.figure(figure_id, figsize=(5,5)) fig.clf() for i in range(filters): plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray') plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha) plt.axis('off') plt.colorbar() plt.title(title, fontsize='small') if colormap_lim: plt.clim(colormap_lim[0],colormap_lim[1]) plt.subplots_adjust(wspace=0, hspace=0) plt.tight_layout() # plt.savefig('{}/{}.png'.format(dir_name,time.time())) ## Load options
Example #5
Source File: dem_processing.py From pydem with Apache License 2.0 | 6 votes |
def _plot_connectivity_helper(self, ii, ji, mat_datai, data, lims=[1, 8]): """ A debug function used to plot the adjacency/connectivity matrix. """ from matplotlib.pyplot import quiver, colorbar, clim, matshow I = ~np.isnan(mat_datai) & (ji != -1) & (mat_datai >= 0) mat_data = mat_datai[I] j = ji[I] i = ii[I] x = i.astype(float) % data.shape[1] y = i.astype(float) // data.shape[1] x1 = (j.astype(float) % data.shape[1]).ravel() y1 = (j.astype(float) // data.shape[1]).ravel() nx = (x1 - x) ny = (y1 - y) matshow(data, cmap='gist_rainbow'); colorbar(); clim(lims) quiver(x, y, nx, ny, mat_data.ravel(), angles='xy', scale_units='xy', scale=1, cmap='bone') colorbar(); clim([0, 1])
Example #6
Source File: fitting.py From AeroPy with MIT License | 5 votes |
def plot_study(self, relative=True): if relative: z = self.rel_error else: z = self.error fig, ax = plt.subplots() cs = ax.contourf(self.P1, self.P2, z, np.linspace(0, 1, 101)) fig.colorbar(cs, ticks=np.linspace(0, 1, 6)) # plt.clim(0, 1) plt.xlabel(self.p1_name) plt.ylabel(self.p2_name) plt.show()
Example #7
Source File: gui_utils.py From segmentator with BSD 3-Clause "New" or "Revised" License | 5 votes |
def updateColorBar(self, val): """Update slider for scaling log colorbar in 2D hist.""" histVMax = np.power(10, self.sHistC.val) plt.clim(vmax=histVMax)
Example #8
Source File: plot.py From code-jam-5 with MIT License | 5 votes |
def create_plot(self, count, date_index): """ Plots and saves a single world map image to the data folder. :param count: Current number of image processed. If it's the first image it's 0. Needed for name of saved image (plot0, plot1 etc) :param date_index: Index for DATES array from which we will get data. """ plot.figure(count) color_mesh = self.world_map.pcolormesh(Plotter.LONGITUDES, Plotter.LATITUDES, np.squeeze(Plotter.TEMPERATURES[date_index]), cmap=self.color_map) color_bar = self.world_map.colorbar(color_mesh, location="bottom", pad="10%") color_bar.set_label(Plotter.TEMPERATURE_UNIT) Plotter.draw_map_details(self.world_map) date = Plotter.get_display_date(Plotter.DATES[date_index]) plot.title(f"Plot for {date}") # This scales the plot to -10,10 making those 2 mark "extremes" # but if we have a change bigger than 10 # we won't be able to see it other than # it being extra red (aka we won't know if it's +11 or +15) plot.clim(-10, 10) file_path = f"{Plotter.PLOTS_DIR}plot{count + 1}.png" # bbox_inches="tight" remove whitespace around the image # facecolor=(0.94, 0.94, 0.94) , background color of image plot.savefig(file_path, dpi=142, bbox_inches="tight", facecolor=(0.94, 0.94, 0.94)) plot.close()
Example #9
Source File: signal_recompose.py From NeuroKit with MIT License | 4 votes |
def _signal_recompose_get_wcorr(components, show=False): """Calculates the weighted correlation matrix for the time series. References ---------- - https://www.kaggle.com/jdarcy/introducing-ssa-for-time-series-decomposition """ # Reorient components components = components.T L = components.shape[1] K = components.shape[0] - L + 1 # Calculate the weights w = np.array(list(np.arange(L) + 1) + [L] * (K - L - 1) + list(np.arange(L) + 1)[::-1]) def w_inner(F_i, F_j): return w.dot(F_i * F_j) # Calculated weighted norms, ||F_i||_w, then invert. F_wnorms = np.array([w_inner(components[:, i], components[:, i]) for i in range(L)]) F_wnorms = F_wnorms ** -0.5 # Calculate Wcorr. Wcorr = np.identity(L) for i in range(L): for j in range(i + 1, L): Wcorr[i, j] = abs(w_inner(components[:, i], components[:, j]) * F_wnorms[i] * F_wnorms[j]) Wcorr[j, i] = Wcorr[i, j] if show is True: ax = plt.imshow(Wcorr) plt.xlabel(r"$\tilde{F}_i$") plt.ylabel(r"$\tilde{F}_j$") plt.colorbar(ax.colorbar, fraction=0.045) ax.colorbar.set_label("$W_{i,j}$") plt.clim(0, 1) # For plotting purposes: min_range = 0 max_range = len(Wcorr) - 1 plt.xlim(min_range - 0.5, max_range + 0.5) plt.ylim(max_range + 0.5, min_range - 0.5) return Wcorr # ============================================================================= # Filter method # =============================================================================
Example #10
Source File: dem_processing.py From pydem with Apache License 2.0 | 4 votes |
def _plot_debug_slopes_directions(self): """ A debug function to plot the direction calculated in various ways. """ # %% from matplotlib.pyplot import matshow, colorbar, clim, title matshow(self.direction / np.pi * 180); colorbar(); clim(0, 360) title('Direction') mag2, direction2 = self._central_slopes_directions() matshow(direction2 / np.pi * 180.0); colorbar(); clim(0, 360) title('Direction (central difference)') matshow(self.mag); colorbar() title('Magnitude') matshow(mag2); colorbar(); title("Magnitude (Central difference)") # %% # Compare to Taudem filename = self.file_name os.chdir('testtiff') try: os.remove('test_ang.tif') os.remove('test_slp.tif') except: pass cmd = ('dinfflowdir -fel "%s" -ang "%s" -slp "%s"' % (os.path.split(filename)[-1], 'test_ang.tif', 'test_slp.tif')) taudem._run(cmd) td_file = GdalReader(file_name='test_ang.tif') td_ang, = td_file.raster_layers td_file2 = GdalReader(file_name='test_slp.tif') td_mag, = td_file2.raster_layers os.chdir('..') matshow(td_ang.raster_data / np.pi*180); clim(0, 360); colorbar() title('Taudem direction') matshow(td_mag.raster_data); colorbar() title('Taudem magnitude') matshow(self.data); colorbar() title('The test data (elevation)') diff = (td_ang.raster_data - self.direction) / np.pi * 180.0 diff[np.abs(diff) > 300] = np.nan matshow(diff); colorbar(); clim([-1, 1]) title('Taudem direction - calculated Direction') # normalize magnitudes mag2 = td_mag.raster_data mag2 /= np.nanmax(mag2) mag = self.mag.copy() mag /= np.nanmax(mag) matshow(mag - mag2); colorbar() title('Taudem magnitude - calculated magnitude') del td_file del td_file2 del td_ang del td_mag
Example #11
Source File: test_depth_renderer.py From opendr with MIT License | 4 votes |
def test_derivatives(self): import chumpy as ch from chumpy.utils import row import numpy as np from .renderer import DepthRenderer rn = DepthRenderer() # Assign attributes to renderer from .util_tests import get_earthmesh m = get_earthmesh(trans=ch.array([0,0,4]), rotation=ch.zeros(3)) w, h = (320, 240) from .camera import ProjectPoints rn.camera = ProjectPoints(v=m.v, rt=ch.zeros(3), t=ch.zeros(3), f=ch.array([w,w])/2., c=ch.array([w,h])/2., k=ch.zeros(5)) rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h} rn.set(v=m.v, f=m.f, bgcolor=ch.zeros(3)) if visualize: import matplotlib.pyplot as plt plt.figure() for which in range(3): r1 = rn.r adder = np.zeros(3) adder[which] = .01 change = rn.v.r * 0 + row(adder) dr_pred = rn.dr_wrt(rn.v).dot(change.ravel()).reshape(rn.shape) rn.v = rn.v.r + change r2 = rn.r dr_emp = r2 - r1 # print np.mean(np.abs(dr_pred-dr_emp)) self.assertLess(np.mean(np.abs(dr_pred-dr_emp)), .031) if visualize: plt.subplot(2,3,which+1) plt.imshow(dr_pred) plt.clim(-.01,.01) plt.title('emp') plt.subplot(2,3,which+4) plt.imshow(dr_emp) plt.clim(-.01,.01) plt.title('pred')
Example #12
Source File: test_depth_renderer.py From opendr with MIT License | 4 votes |
def test_derivatives2(self): import chumpy as ch import numpy as np from .renderer import DepthRenderer rn = DepthRenderer() # Assign attributes to renderer from .util_tests import get_earthmesh m = get_earthmesh(trans=ch.array([0,0,4]), rotation=ch.zeros(3)) w, h = (320, 240) from .camera import ProjectPoints rn.camera = ProjectPoints(v=m.v, rt=ch.zeros(3), t=ch.zeros(3), f=ch.array([w,w])/2., c=ch.array([w,h])/2., k=ch.zeros(5)) rn.frustum = {'near': 1., 'far': 10., 'width': w, 'height': h} rn.set(v=m.v, f=m.f, bgcolor=ch.zeros(3)) if visualize: import matplotlib.pyplot as plt plt.ion() plt.figure() for which in range(3): r1 = rn.r adder = np.random.rand(rn.v.r.size).reshape(rn.v.r.shape)*.01 change = rn.v.r * 0 + adder dr_pred = rn.dr_wrt(rn.v).dot(change.ravel()).reshape(rn.shape) rn.v = rn.v.r + change r2 = rn.r dr_emp = r2 - r1 #print np.mean(np.abs(dr_pred-dr_emp)) self.assertLess(np.mean(np.abs(dr_pred-dr_emp)), .024) if visualize: plt.subplot(2,3,which+1) plt.imshow(dr_pred) plt.clim(-.01,.01) plt.title('emp') plt.subplot(2,3,which+4) plt.imshow(dr_emp) plt.clim(-.01,.01) plt.title('pred') plt.draw() plt.show()
Example #13
Source File: figures.py From sklearn_pydata2015 with BSD 3-Clause "New" or "Revised" License | 4 votes |
def visualize_tree(estimator, X, y, boundaries=True, xlim=None, ylim=None): estimator.fit(X, y) if xlim is None: xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1) if ylim is None: ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow') plt.clim(y.min(), y.max()) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow') plt.axis('off') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.clim(y.min(), y.max()) # Plot the decision boundaries def plot_boundaries(i, xlim, ylim): if i < 0: return tree = estimator.tree_ if tree.feature[i] == 0: plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k') plot_boundaries(tree.children_left[i], [xlim[0], tree.threshold[i]], ylim) plot_boundaries(tree.children_right[i], [tree.threshold[i], xlim[1]], ylim) elif tree.feature[i] == 1: plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k') plot_boundaries(tree.children_left[i], xlim, [ylim[0], tree.threshold[i]]) plot_boundaries(tree.children_right[i], xlim, [tree.threshold[i], ylim[1]]) if boundaries: plot_boundaries(0, plt.xlim(), plt.ylim())
Example #14
Source File: figures.py From MachineLearning with BSD 3-Clause "New" or "Revised" License | 4 votes |
def visualize_tree(estimator, X, y, boundaries=True, xlim=None, ylim=None): estimator.fit(X, y) if xlim is None: xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1) if ylim is None: ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow') plt.clim(y.min(), y.max()) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow') plt.axis('off') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.clim(y.min(), y.max()) # Plot the decision boundaries def plot_boundaries(i, xlim, ylim): if i < 0: return tree = estimator.tree_ if tree.feature[i] == 0: plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k') plot_boundaries(tree.children_left[i], [xlim[0], tree.threshold[i]], ylim) plot_boundaries(tree.children_right[i], [tree.threshold[i], xlim[1]], ylim) elif tree.feature[i] == 1: plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k') plot_boundaries(tree.children_left[i], xlim, [ylim[0], tree.threshold[i]]) plot_boundaries(tree.children_right[i], xlim, [tree.threshold[i], ylim[1]]) if boundaries: plot_boundaries(0, plt.xlim(), plt.ylim())
Example #15
Source File: figures.py From ESAC-stats-2014 with BSD 2-Clause "Simplified" License | 4 votes |
def visualize_tree(estimator, X, y, boundaries=True, xlim=None, ylim=None): estimator.fit(X, y) if xlim is None: xlim = (X[:, 0].min() - 0.1, X[:, 0].max() + 0.1) if ylim is None: ylim = (X[:, 1].min() - 0.1, X[:, 1].max() + 0.1) x_min, x_max = xlim y_min, y_max = ylim xx, yy = np.meshgrid(np.linspace(x_min, x_max, 100), np.linspace(y_min, y_max, 100)) Z = estimator.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) plt.figure() plt.pcolormesh(xx, yy, Z, alpha=0.2, cmap='rainbow') plt.clim(y.min(), y.max()) # Plot also the training points plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='rainbow') plt.axis('off') plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.clim(y.min(), y.max()) # Plot the decision boundaries def plot_boundaries(i, xlim, ylim): if i < 0: return tree = estimator.tree_ if tree.feature[i] == 0: plt.plot([tree.threshold[i], tree.threshold[i]], ylim, '-k') plot_boundaries(tree.children_left[i], [xlim[0], tree.threshold[i]], ylim) plot_boundaries(tree.children_right[i], [tree.threshold[i], xlim[1]], ylim) elif tree.feature[i] == 1: plt.plot(xlim, [tree.threshold[i], tree.threshold[i]], '-k') plot_boundaries(tree.children_left[i], xlim, [ylim[0], tree.threshold[i]]) plot_boundaries(tree.children_right[i], xlim, [tree.threshold[i], ylim[1]]) if boundaries: plot_boundaries(0, plt.xlim(), plt.ylim())