Python matplotlib.colors.BoundaryNorm() Examples
The following are 30
code examples of matplotlib.colors.BoundaryNorm().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.colors
, or try the search function
.
Example #1
Source File: test_colorbar.py From twitter-stock-recommendation with MIT License | 6 votes |
def _get_cmap_norms(): """ Define a colormap and appropriate norms for each of the four possible settings of the extend keyword. Helper function for _colorbar_extension_shape and colorbar_extension_length. """ # Create a color map and specify the levels it represents. cmap = get_cmap("RdBu", lut=5) clevs = [-5., -2.5, -.5, .5, 1.5, 3.5] # Define norms for the color maps. norms = dict() norms['neither'] = BoundaryNorm(clevs, len(clevs) - 1) norms['min'] = BoundaryNorm([-10] + clevs[1:], len(clevs) - 1) norms['max'] = BoundaryNorm(clevs[:-1] + [10], len(clevs) - 1) norms['both'] = BoundaryNorm([-10] + clevs[1:-1] + [10], len(clevs) - 1) return cmap, norms
Example #2
Source File: colorbar.py From Computable with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #3
Source File: display.py From pycpt with GNU General Public License v2.0 | 6 votes |
def plot_colormap(cmap, continuous=True, discrete=True, ndisc=9): """Make a figure displaying the color map in continuous and/or discrete form """ nplots = int(continuous) + int(discrete) fig, axx = plt.subplots(figsize=(6,.5*nplots), nrows=nplots, frameon=False) axx = np.asarray(axx) i=0 if continuous: norm = mcolors.Normalize(vmin=0, vmax=1) ColorbarBase(axx.flat[i], cmap=cmap, norm=norm, orientation='horizontal') ; i+=1 if discrete: colors = cmap(np.linspace(0, 1, ndisc)) cmap_d = mcolors.ListedColormap(colors, name=cmap.name) norm = mcolors.BoundaryNorm(np.linspace(0, 1, ndisc+1), len(colors)) ColorbarBase(axx.flat[i], cmap=cmap_d, norm=norm, orientation='horizontal') for ax in axx.flat: ax.set_axis_off() fig.text(0.95, 0.5, cmap.name, va='center', ha='left', fontsize=12)
Example #4
Source File: colorbar.py From matplotlib-4-abaqus with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #5
Source File: test_colorbar.py From neural-network-animation with MIT License | 6 votes |
def _get_cmap_norms(): """ Define a colormap and appropriate norms for each of the four possible settings of the extend keyword. Helper function for _colorbar_extension_shape and colorbar_extension_length. """ # Create a color map and specify the levels it represents. cmap = get_cmap("RdBu", lut=5) clevs = [-5., -2.5, -.5, .5, 1.5, 3.5] # Define norms for the color maps. norms = dict() norms['neither'] = BoundaryNorm(clevs, len(clevs) - 1) norms['min'] = BoundaryNorm([-10] + clevs[1:], len(clevs) - 1) norms['max'] = BoundaryNorm(clevs[:-1] + [10], len(clevs) - 1) norms['both'] = BoundaryNorm([-10] + clevs[1:-1] + [10], len(clevs) - 1) return cmap, norms
Example #6
Source File: colorbar.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _get_ticker_locator_formatter(self): """ This code looks at the norm being used by the colorbar and decides what locator and formatter to use. If ``locator`` has already been set by hand, it just returns ``self.locator, self.formatter``. """ locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv / 10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = _ColorbarLogLocator(self) elif isinstance(self.norm, colors.SymLogNorm): # The subs setting here should be replaced # by logic in the locator. locator = ticker.SymmetricalLogLocator( subs=np.arange(1, 10), linthresh=self.norm.linthresh, base=10) else: if mpl.rcParams['_internal.classic_mode']: locator = ticker.MaxNLocator() else: locator = _ColorbarAutoLocator(self) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) _log.debug('locator: %r', locator) return locator, formatter
Example #7
Source File: colorbar.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) #, nbins=10) self.cbar_axis.set_major_locator(locator)
Example #8
Source File: test_colorbar.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _get_cmap_norms(): """ Define a colormap and appropriate norms for each of the four possible settings of the extend keyword. Helper function for _colorbar_extension_shape and colorbar_extension_length. """ # Create a color map and specify the levels it represents. cmap = get_cmap("RdBu", lut=5) clevs = [-5., -2.5, -.5, .5, 1.5, 3.5] # Define norms for the color maps. norms = dict() norms['neither'] = BoundaryNorm(clevs, len(clevs) - 1) norms['min'] = BoundaryNorm([-10] + clevs[1:], len(clevs) - 1) norms['max'] = BoundaryNorm(clevs[:-1] + [10], len(clevs) - 1) norms['both'] = BoundaryNorm([-10] + clevs[1:-1] + [10], len(clevs) - 1) return cmap, norms
Example #9
Source File: main.py From youtube with GNU General Public License v3.0 | 6 votes |
def plot_slic(array, clusters, K, S, output_figure = ''): fig = plt.figure(figsize=(8, 6)) # create colormap based on cluster RGB centers slic_colormap = [] for c in clusters: slic_colormap.append((c[0], c[1], c[2], 1.0)) slic_listed_colormap = ListedColormap(slic_colormap) slic_norm = BoundaryNorm(range(K), K) plt.imshow(array, norm=slic_norm, cmap=slic_listed_colormap) # adjust image (rows, columns) = array.shape plt.xlim([0 - S, columns + S]) plt.ylim([0 - S, rows + S]) if output_figure != '': plt.savefig(output_figure, format='png', dpi=1000) else: plt.show() # open dataset
Example #10
Source File: instance_attention.py From Scale-Adaptive-Network with MIT License | 6 votes |
def show(self, image, label_1s, label_2s, label_3s, label, label_at): import matplotlib.pyplot as plt from matplotlib import colors # make a color map of fixed colors cmap = colors.ListedColormap([(0,0,0), (0.5,0,0), (0,0.5,0), (0.5,0.5,0), (0,0,0.5), (0.5,0,0.5), (0,0.5,0.5)]) bounds=[0,1,2,3,4,5,6,7] norm = colors.BoundaryNorm(bounds, cmap.N) fig, axes = plt.subplots(2,3) (ax1, ax2, ax3), (ax4, ax5, ax6) = axes ax1.set_title('image'); ax1.imshow(image) ax3.set_title('label'); ax2.imshow(label, cmap=cmap, norm=norm) ax3.set_title('label 1s'); ax3.imshow(label_1s, cmap=cmap, norm=norm) ax4.set_title('label 2s'); ax4.imshow(label_2s, cmap=cmap, norm=norm) ax5.set_title('label 3s'); ax5.imshow(label_3s, cmap=cmap, norm=norm) ax6.set_title('label at'); ax6.imshow(label_at, cmap=cmap, norm=norm) plt.show()
Example #11
Source File: part_attention.py From Scale-Adaptive-Network with MIT License | 6 votes |
def show(self, image, label_1s, label_2s, label_3s, label, label_at): import matplotlib.pyplot as plt from matplotlib import colors # make a color map of fixed colors cmap = colors.ListedColormap([(0,0,0), (0.5,0,0), (0,0.5,0), (0.5,0.5,0), (0,0,0.5), (0.5,0,0.5), (0,0.5,0.5)]) bounds=[0,1,2,3,4,5,6,7] norm = colors.BoundaryNorm(bounds, cmap.N) fig, axes = plt.subplots(2,3) (ax1, ax2, ax3), (ax4, ax5, ax6) = axes ax1.set_title('image'); ax1.imshow(image) ax3.set_title('label'); ax2.imshow(label, cmap=cmap, norm=norm) ax3.set_title('label 1s'); ax3.imshow(label_1s, cmap=cmap, norm=norm) ax4.set_title('label 2s'); ax4.imshow(label_2s, cmap=cmap, norm=norm) ax5.set_title('label 3s'); ax5.imshow(label_3s, cmap=cmap, norm=norm) ax6.set_title('label at'); ax6.imshow(label_at, cmap=cmap, norm=norm) plt.show()
Example #12
Source File: test_colorbar.py From coffeegrindsize with MIT License | 6 votes |
def _get_cmap_norms(): """ Define a colormap and appropriate norms for each of the four possible settings of the extend keyword. Helper function for _colorbar_extension_shape and colorbar_extension_length. """ # Create a color map and specify the levels it represents. cmap = get_cmap("RdBu", lut=5) clevs = [-5., -2.5, -.5, .5, 1.5, 3.5] # Define norms for the color maps. norms = dict() norms['neither'] = BoundaryNorm(clevs, len(clevs) - 1) norms['min'] = BoundaryNorm([-10] + clevs[1:], len(clevs) - 1) norms['max'] = BoundaryNorm(clevs[:-1] + [10], len(clevs) - 1) norms['both'] = BoundaryNorm([-10] + clevs[1:-1] + [10], len(clevs) - 1) return cmap, norms
Example #13
Source File: colorbar.py From CogAlg with MIT License | 6 votes |
def _select_locator(self, formatter): ''' select a suitable locator ''' if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator(nbins=5) else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b) self.cbar_axis.set_major_locator(locator)
Example #14
Source File: colorbar.py From twitter-stock-recommendation with MIT License | 5 votes |
def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) y = np.ma.filled(y, np.nan) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen elif self.extend == 'both': # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen if self.extend in ('both', 'min', 'max'): extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = np.ma.filled(norm(yi), np.nan) return y
Example #15
Source File: colorbar.py From CogAlg with MIT License | 5 votes |
def _locate(self, x): ''' Given a set of color data values, return their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() xn = self.norm(x, clip=False).filled() bunique = b yunique = self._y # trim extra b values at beginning and end if they are # not unique. These are here for extended colorbars, and are not # wanted for the interpolation. if b[0] == b[1]: bunique = bunique[1:] yunique = yunique[1:] if b[-1] == b[-2]: bunique = bunique[:-1] yunique = yunique[:-1] z = np.interp(xn, bunique, yunique) return z
Example #16
Source File: colorbar.py From CogAlg with MIT License | 5 votes |
def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) y = np.ma.filled(y, np.nan) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen elif self.extend == 'both': # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen if self.extend in ('both', 'min', 'max'): extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = np.ma.filled(norm(yi), np.nan) return y
Example #17
Source File: evaluate.py From DSRG with MIT License | 5 votes |
def show_all(gt, pred): import matplotlib.pyplot as plt from matplotlib import colors from mpl_toolkits.axes_grid1 import make_axes_locatable fig, axes = plt.subplots(1, 2) ax1, ax2 = axes classes = np.array(('background', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')) colormap = [(0,0,0),(0.5,0,0),(0,0.5,0),(0.5,0.5,0),(0,0,0.5),(0.5,0,0.5),(0,0.5,0.5), (0.5,0.5,0.5),(0.25,0,0),(0.75,0,0),(0.25,0.5,0),(0.75,0.5,0),(0.25,0,0.5), (0.75,0,0.5),(0.25,0.5,0.5),(0.75,0.5,0.5),(0,0.25,0),(0.5,0.25,0),(0,0.75,0), (0.5,0.75,0),(0,0.25,0.5)] cmap = colors.ListedColormap(colormap) bounds=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] norm = colors.BoundaryNorm(bounds, cmap.N) ax1.set_title('gt') ax1.imshow(gt, cmap=cmap, norm=norm) ax2.set_title('pred') ax2.imshow(pred, cmap=cmap, norm=norm) plt.show()
Example #18
Source File: colorbar.py From Computable with MIT License | 5 votes |
def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen else: # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y
Example #19
Source File: cmap.py From artview with BSD 3-Clause "New" or "Revised" License | 5 votes |
def update_colormap(self): '''Get colormap from GUI.''' self.cmap['lock'] = self.lock_box.isChecked() idx = self.norm_type.currentIndex() self.cmap['vmin'] = float(self.ent_vmin.text()) self.cmap['vmax'] = float(self.ent_vmax.text()) if idx == 0: self.cmap['norm'] = None elif idx == 1: self.cmap['norm'] = colors.Normalize(vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 2: self.cmap['norm'] = colors.LogNorm(vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 3: self.cmap['norm'] = colors.SymLogNorm( linthresh=float(self.ent_linthresh.text()), linscale=float(self.ent_linscale.text()), vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 4: self.cmap['norm'] = colors.PowerNorm( gamma=float(self.ent_gamma.text()), vmin=self.cmap['vmin'], vmax=self.cmap['vmax']) elif idx == 5: bounds = self.get_bounds() self.cmap['norm'] = colors.BoundaryNorm(bounds, ncolors=256) self.plot()
Example #20
Source File: cmap.py From artview with BSD 3-Clause "New" or "Revised" License | 5 votes |
def plot(self): '''Replot the colorbar.''' if self.cmap is None: return self.ax.cla() self.cax.cla() cmap = self.cmap if 'norm' not in cmap or cmap['norm'] is None: self.norm_type.setCurrentIndex(0) else: norm_name = cmap['norm'].__class__.__name__ if norm_name == 'Normalize': self.norm_type.setCurrentIndex(1) elif norm_name == 'LogNorm': self.norm_type.setCurrentIndex(2) elif norm_name == 'SymLogNorm': self.norm_type.setCurrentIndex(3) elif norm_name == 'PowerNorm': self.norm_type.setCurrentIndex(4) elif norm_name == 'BoundaryNorm': self.norm_type.setCurrentIndex(5) if cmap is not None: if 'norm' in cmap: norm = cmap['norm'] else: norm = None im = self.ax.imshow(gradient, aspect='auto', cmap=cmap['cmap'], vmin=cmap['vmin'], vmax=cmap['vmax'], norm=norm) plt.colorbar(im, cax=self.cax) self.canvas.draw()
Example #21
Source File: test_colors.py From ImageFusion with MIT License | 5 votes |
def test_BoundaryNorm(): """ Github issue #1258: interpolation was failing with numpy 1.7 pre-release. """ # TODO: expand this into a more general test of BoundaryNorm. boundaries = [0, 1.1, 2.2] vals = [-1, 0, 2, 2.2, 4] expected = [-1, 0, 2, 3, 3] # ncolors != len(boundaries) - 1 triggers interpolation ncolors = len(boundaries) bn = mcolors.BoundaryNorm(boundaries, ncolors) assert_array_equal(bn(vals), expected)
Example #22
Source File: colorbar.py From ImageFusion with MIT License | 5 votes |
def _locate(self, x): ''' Given a set of color data values, return their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() xn = self.norm(x, clip=False).filled() # The rest is linear interpolation with extrapolation at ends. ii = np.searchsorted(b, xn) i0 = ii - 1 itop = (ii == len(b)) ibot = (ii == 0) i0[itop] -= 1 ii[itop] -= 1 i0[ibot] += 1 ii[ibot] += 1 db = np.take(b, ii) - np.take(b, i0) y = self._y dy = np.take(y, ii) - np.take(y, i0) z = np.take(y, i0) + (xn - np.take(b, i0)) * dy / db return z
Example #23
Source File: colorbar.py From ImageFusion with MIT License | 5 votes |
def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen else: # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y
Example #24
Source File: data_class.py From MIDI-VAE with MIT License | 5 votes |
def draw_difference_pianoroll(original, predicted, name_1='Original', name_2='Predicted', show=False, save_path=''): if original.shape!=predicted.shape: print("Shape mismatch. Not drawing a plot.") return draw_matrix = original + 2 * predicted cm = colors.ListedColormap(['white', 'blue', 'red', 'black']) bounds=[0,1,2,3,4] n = colors.BoundaryNorm(bounds, cm.N) original_color = cm(1/3) predicted_color = cm(2/3) both_color = cm(1.0) original_patch = mpatches.Patch(color=original_color, label=name_1) predicted_patch = mpatches.Patch(color=predicted_color, label=name_2) both_patch = mpatches.Patch(color=both_color, label='Notes in both songs') plt.figure(figsize=(20.0, 10.0)) plt.title('Difference-Pitch-plot of ' + name_1 + ' and ' + name_2, fontsize=10) plt.legend(handles=[original_patch, predicted_patch, both_patch], loc='upper right', prop={'size': 8}) plt.pcolor(draw_matrix, cmap=cm, vmin=0, vmax=3, norm=n) if show: plt.show() if len(save_path) > 0: plt.savefig(save_path) tikz_save(save_path + ".tex", encoding='utf-8', show_info=False) plt.close()
Example #25
Source File: palettes.py From scvelo with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _plot_color_cylce(clists: Mapping[str, Sequence[str]]): import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap, BoundaryNorm fig, axes = plt.subplots(nrows=len(clists)) # type: plt.Figure, plt.Axes fig.subplots_adjust(top=0.95, bottom=0.01, left=0.3, right=0.99) axes[0].set_title("Color Maps/Cycles", fontsize=14) for ax, (name, clist) in zip(axes, clists.items()): n = len(clist) ax.imshow( np.arange(n)[None, :].repeat(2, 0), aspect="auto", cmap=ListedColormap(clist), norm=BoundaryNorm(np.arange(n + 1) - 0.5, n), ) pos = list(ax.get_position().bounds) x_text = pos[0] - 0.01 y_text = pos[1] + pos[3] / 2.0 fig.text(x_text, y_text, name, va="center", ha="right", fontsize=10) # Turn off all ticks & spines for ax in axes: ax.set_axis_off() fig.show()
Example #26
Source File: evaluate.py From Pytorch-Deeplab with MIT License | 5 votes |
def show_all(gt, pred): import matplotlib.pyplot as plt from matplotlib import colors from mpl_toolkits.axes_grid1 import make_axes_locatable fig, axes = plt.subplots(1, 2) ax1, ax2 = axes classes = np.array(('background', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')) colormap = [(0,0,0),(0.5,0,0),(0,0.5,0),(0.5,0.5,0),(0,0,0.5),(0.5,0,0.5),(0,0.5,0.5), (0.5,0.5,0.5),(0.25,0,0),(0.75,0,0),(0.25,0.5,0),(0.75,0.5,0),(0.25,0,0.5), (0.75,0,0.5),(0.25,0.5,0.5),(0.75,0.5,0.5),(0,0.25,0),(0.5,0.25,0),(0,0.75,0), (0.5,0.75,0),(0,0.25,0.5)] cmap = colors.ListedColormap(colormap) bounds=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] norm = colors.BoundaryNorm(bounds, cmap.N) ax1.set_title('gt') ax1.imshow(gt, cmap=cmap, norm=norm) ax2.set_title('pred') ax2.imshow(pred, cmap=cmap, norm=norm) plt.show()
Example #27
Source File: evaluate_msc.py From Pytorch-Deeplab with MIT License | 5 votes |
def show_all(gt, pred): import matplotlib.pyplot as plt from matplotlib import colors from mpl_toolkits.axes_grid1 import make_axes_locatable fig, axes = plt.subplots(1, 2) ax1, ax2 = axes classes = np.array(('background', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')) colormap = [(0,0,0),(0.5,0,0),(0,0.5,0),(0.5,0.5,0),(0,0,0.5),(0.5,0,0.5),(0,0.5,0.5), (0.5,0.5,0.5),(0.25,0,0),(0.75,0,0),(0.25,0.5,0),(0.75,0.5,0),(0.25,0,0.5), (0.75,0,0.5),(0.25,0.5,0.5),(0.75,0.5,0.5),(0,0.25,0),(0.5,0.25,0),(0,0.75,0), (0.5,0.75,0),(0,0.25,0.5)] cmap = colors.ListedColormap(colormap) bounds=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21] norm = colors.BoundaryNorm(bounds, cmap.N) ax1.set_title('gt') ax1.imshow(gt, cmap=cmap, norm=norm) ax2.set_title('pred') ax2.imshow(pred, cmap=cmap, norm=norm) plt.show()
Example #28
Source File: colorbar.py From matplotlib-4-abaqus with MIT License | 5 votes |
def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen else: # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y
Example #29
Source File: modify.py From pycpt with GNU General Public License v2.0 | 5 votes |
def generate_cmap_norm(levels, cm, extend='neither', name='from_list', return_dict=False): """Generate a color map and norm from levels and a colormap (name) Parameters ---------- levels : iterable of levels data levels cm : cmap or name of registered cmap color map extend : str [ neither | both | min | max ] which edge(s) of the color range to extend name : str, optional new name for colormap return_dict : bool return dictionary """ if isinstance(cm, str): cm = plt.get_cmap(cm) nplus = [-1,0,0,1][['neither','min','max','both'].index(extend)] N = len(levels) + nplus colors = cm(np.linspace(0, 1, N)) cmap = mcolors.ListedColormap(colors, name=(name or cm.name)) if extend in ['min', 'both']: cmap.set_under(colors[0]) else: cmap.set_under('none') if extend in ['max', 'both']: cmap.set_over(colors[-1]) else: cmap.set_over('none') cmap.colorbar_extend = extend norm = mcolors.BoundaryNorm(levels, N) if return_dict: return dict(cmap=cmap, norm=norm) else: return cmap, norm
Example #30
Source File: get_attention_of_branches.py From Scale-Adaptive-Network with MIT License | 5 votes |
def handle_three_branches(self, im, result, final, op_1s, op_2s, op_3s): fig, axes = plt.subplots(2, 3) (ax1, ax2, ax3), (ax4, ax5, ax6) = axes fig.set_size_inches(16, 8, forward=True) ax1.set_title('im') ax1.imshow(im) # make a color map of fixed colors cmap = colors.ListedColormap([(0,0,0), (0.5,0,0), (0,0.5,0), (0.5,0.5,0), (0,0,0.5), (0.5,0,0.5), (0,0.5,0.5)]) bounds=[0,1,2,3,4,5,6,7] norm = colors.BoundaryNorm(bounds, cmap.N) ax2.set_title('prediction') ax2.imshow(result, cmap=cmap, norm=norm) ax3.set_title('branch_1s') im1 = ax3.imshow(op_1s) divider3 = make_axes_locatable(ax3) cax3 = divider3.append_axes("right", size="5%", pad=0.05) plt.colorbar(im1, cax=cax3) ax4.set_title('branch_2s') im2 = ax4.imshow(op_2s) divider4 = make_axes_locatable(ax4) cax4 = divider4.append_axes("right", size="5%", pad=0.05) plt.colorbar(im2, cax=cax4) ax5.set_title('branch_3s') im3 = ax5.imshow(op_3s) divider5 = make_axes_locatable(ax5) cax5 = divider5.append_axes("right", size="5%", pad=0.05) plt.colorbar(im3, cax=cax5) ax6.set_title('final output') fl = ax6.imshow(final, vmin=0, vmax=1) divider6 = make_axes_locatable(ax6) cax6 = divider6.append_axes("right", size="5%", pad=0.05) plt.colorbar(fl, cax=cax6) #plt.show() return fig