Python torchvision.transforms() Examples
The following are 30
code examples of torchvision.transforms().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torchvision
, or try the search function
.
Example #1
Source File: train.py From pytorch-multigpu with MIT License | 7 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example #2
Source File: dataloader.py From imagenet18_old with The Unlicense | 7 votes |
def get_loaders(traindir, valdir, sz, bs, fp16=True, val_bs=None, workers=8, rect_val=False, min_scale=0.08, distributed=False): val_bs = val_bs or bs train_tfms = [ transforms.RandomResizedCrop(sz, scale=(min_scale, 1.0)), transforms.RandomHorizontalFlip() ] train_dataset = datasets.ImageFolder(traindir, transforms.Compose(train_tfms)) train_sampler = (DistributedSampler(train_dataset, num_replicas=env_world_size(), rank=env_rank()) if distributed else None) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=bs, shuffle=(train_sampler is None), num_workers=workers, pin_memory=True, collate_fn=fast_collate, sampler=train_sampler) val_dataset, val_sampler = create_validation_set(valdir, val_bs, sz, rect_val=rect_val, distributed=distributed) val_loader = torch.utils.data.DataLoader( val_dataset, num_workers=workers, pin_memory=True, collate_fn=fast_collate, batch_sampler=val_sampler) train_loader = BatchTransformDataLoader(train_loader, fp16=fp16) val_loader = BatchTransformDataLoader(val_loader, fp16=fp16) return train_loader, val_loader, train_sampler, val_sampler
Example #3
Source File: query.py From deep-ranking with MIT License | 6 votes |
def __init__(self, root_dir, transform=None, loader = pil_loader): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ if transform == None : transform = torchvision.transforms.Compose([torchvision.transforms.Resize(224), torchvision.transforms.RandomHorizontalFlip(p=0.5), torchvision.transforms.RandomVerticalFlip(p=0.5), torchvision.transforms.ToTensor()]) self.root_dir = root_dir self.transform = transform self.loader = loader self.images = os.listdir(os.path.join(self.root_dir)) self.image_class = np.array(pd.read_csv('val_details.txt', sep='\t')[['mage','class']]).astype('str') self.class_dic = {} for i in self.image_class : self.class_dic[i[0]]=i[1]
Example #4
Source File: image_featurizers.py From neural_chat with MIT License | 6 votes |
def _lazy_import_torch(self): try: import torch except ImportError: raise ImportError('Need to install Pytorch: go to pytorch.org') import torchvision import torchvision.transforms as transforms import torch.nn as nn self.use_cuda = not self.opt.get('no_cuda', False) and torch.cuda.is_available() if self.use_cuda: print('[ Using CUDA ]') torch.cuda.set_device(self.opt.get('gpu', -1)) self.torch = torch self.torchvision = torchvision self.transforms = transforms self.nn = nn
Example #5
Source File: cityscapes.py From PyTorch-Encoding with MIT License | 6 votes |
def __init__(self, root=os.path.expanduser('~/.encoding/data/citys/'), split='train', mode=None, transform=None, target_transform=None, **kwargs): super(CitySegmentation, self).__init__( root, split, mode, transform, target_transform, **kwargs) #self.root = os.path.join(root, self.BASE_DIR) self.images, self.mask_paths = get_city_pairs(self.root, self.split) assert (len(self.images) == len(self.mask_paths)) if len(self.images) == 0: raise RuntimeError("Found 0 images in subfolders of: \ " + self.root + "\n") self._indices = np.array(range(-1, 19)) self._classes = np.array([0, 7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33]) self._key = np.array([-1, -1, -1, -1, -1, -1, -1, -1, 0, 1, -1, -1, 2, 3, 4, -1, -1, -1, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, -1, -1, 16, 17, 18]) self._mapping = np.array(range(-1, len(self._key)-1)).astype('int32')
Example #6
Source File: cityscapes.py From PyTorch-Encoding with MIT License | 6 votes |
def __getitem__(self, index): img = Image.open(self.images[index]).convert('RGB') if self.mode == 'test': if self.transform is not None: img = self.transform(img) return img, os.path.basename(self.images[index]) #mask = self.masks[index] mask = Image.open(self.mask_paths[index]) # synchrosized transform if self.mode == 'train': img, mask = self._sync_transform(img, mask) elif self.mode == 'val': img, mask = self._val_sync_transform(img, mask) else: assert self.mode == 'testval' mask = self._mask_transform(mask) # general resize, normalize and toTensor if self.transform is not None: img = self.transform(img) if self.target_transform is not None: mask = self.target_transform(mask) return img, mask
Example #7
Source File: test_embedding.py From deep-ranking with MIT License | 6 votes |
def __init__(self, root_dir, transform=None, loader = pil_loader): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ if transform == None : transform = torchvision.transforms.Compose([torchvision.transforms.Resize(224), torchvision.transforms.RandomHorizontalFlip(p=0.5), torchvision.transforms.RandomVerticalFlip(p=0.5), torchvision.transforms.ToTensor()]) self.root_dir = root_dir self.transform = transform self.loader = loader self.images = os.listdir(os.path.join(self.root_dir)) self.image_class = np.array(pd.read_csv('val_details.txt', sep='\t')[['mage','class']]).astype('str') self.class_dic = {} for i in self.image_class : self.class_dic[i[0]]=i[1]
Example #8
Source File: net_run.py From PyMIC with Apache License 2.0 | 6 votes |
def get_stage_dataset_from_config(self, stage): assert(stage in ['train', 'valid', 'test']) root_dir = self.config['dataset']['root_dir'] modal_num = self.config['dataset']['modal_num'] if(stage == "train" or stage == "valid"): transform_names = self.config['dataset']['train_transform'] elif(stage == "test"): transform_names = self.config['dataset']['test_transform'] else: raise ValueError("Incorrect value for stage: {0:}".format(stage)) self.transform_list = [get_transform(name, self.config['dataset']) \ for name in transform_names ] csv_file = self.config['dataset'].get(stage + '_csv', None) dataset = NiftyDataset(root_dir=root_dir, csv_file = csv_file, modal_num = modal_num, with_label= not (stage == 'test'), transform = transforms.Compose(self.transform_list)) return dataset
Example #9
Source File: attack.py From one-pixel-attack-pytorch with MIT License | 6 votes |
def main(): print "==> Loading data and model..." tranfrom_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=tranfrom_test) testloader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=True, num_workers=2) class_names = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/%s.t7'%args.model) net = checkpoint['net'] net.cuda() cudnn.benchmark = True print "==> Starting attck..." results = attack_all(net, testloader, pixels=args.pixels, targeted=args.targeted, maxiter=args.maxiter, popsize=args.popsize, verbose=args.verbose) print "Final success rate: %.4f"%results
Example #10
Source File: image_featurizers.py From ParlAI with MIT License | 6 votes |
def _lazy_import_torch(self): try: import torch except ImportError: raise ImportError('Need to install Pytorch: go to pytorch.org') import torchvision import torchvision.transforms as transforms import torch.nn as nn self.use_cuda = not self.opt.get('no_cuda', False) and torch.cuda.is_available() if self.use_cuda: logging.debug(f'Using CUDA') torch.cuda.set_device(self.opt.get('gpu', -1)) self.torch = torch self.torchvision = torchvision self.transforms = transforms self.nn = nn
Example #11
Source File: example_5_pytorch_worker.py From HpBandSter with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, N_train = 8192, N_valid = 1024, **kwargs): super().__init__(**kwargs) batch_size = 64 # Load the MNIST Data here train_dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data', train=False, transform=transforms.ToTensor()) train_sampler = torch.utils.data.sampler.SubsetRandomSampler(range(N_train)) validation_sampler = torch.utils.data.sampler.SubsetRandomSampler(range(N_train, N_train+N_valid)) self.train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, sampler=train_sampler) self.validation_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=1024, sampler=validation_sampler) self.test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1024, shuffle=False)
Example #12
Source File: example_5_pytorch_worker.py From HpBandSter with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, N_train = 8192, N_valid = 1024, **kwargs): super().__init__(**kwargs) batch_size = 64 # Load the MNIST Data here train_dataset = torchvision.datasets.MNIST(root='../../data', train=True, transform=transforms.ToTensor(), download=True) test_dataset = torchvision.datasets.MNIST(root='../../data', train=False, transform=transforms.ToTensor()) train_sampler = torch.utils.data.sampler.SubsetRandomSampler(range(N_train)) validation_sampler = torch.utils.data.sampler.SubsetRandomSampler(range(N_train, N_train+N_valid)) self.train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, sampler=train_sampler) self.validation_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=1024, sampler=validation_sampler) self.test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=1024, shuffle=False)
Example #13
Source File: SCVNet.py From SCVNet with MIT License | 6 votes |
def __init__(self, transform=None, transform_label=None): self.root = KITTI_2015_TRAIN_PATH_IMAGE self.root_label = KITTI_2015_TRAIN_PATH_LABEL self.camera = [ 'image_2/', 'image_3/' ] if transform is None: self.transform = transforms.Compose( [ transforms.ToTensor() ] ) else: self.transform = transform self.transform_label = transform_label return
Example #14
Source File: SCVNet.py From SCVNet with MIT License | 6 votes |
def __init__(self, transform=None, transform_label=None): self.root = KITTI_2015_TEST_PATH_IMAGE self.root_label = KITTI_2015_TEST_PATH_LABEL self.camera = [ 'image_2/', 'image_3/' ] if transform is None: self.transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) else: self.transform = transform self.transform_label = transform_label return
Example #15
Source File: preprocessing_transforms.py From ViP with MIT License | 6 votes |
def __init__(self): self.resize = ResizeClip(resize_shape = [2,2]) self.crop = CropClip(0,0,0,0, crop_shape=[2,2]) self.rand_crop = RandomCropClip(crop_shape=[2,2]) self.cent_crop = CenterCropClip(crop_shape=[2,2]) self.rand_flip_h = RandomFlipClip(direction='h', p=1.0) self.rand_flip_v = RandomFlipClip(direction='v', p=1.0) self.rand_rot = RandomRotateClip(angles=[90]) self.rand_trans = RandomTranslateClip(translate=(0.5,0.5)) self.rand_zoom = RandomZoomClip(scale=(1.25,1.25)) self.sub_mean = SubtractMeanClip(clip_mean=np.zeros(1)) self.applypil = ApplyToPIL(transform=torchvision.transforms.ColorJitter, class_kwargs=dict(brightness=1)) self.applypil2 = ApplyToPIL(transform=torchvision.transforms.FiveCrop, class_kwargs=dict(size=(64,64))) self.applytensor = ApplyToTensor(transform=torchvision.transforms.Normalize, class_kwargs=dict(mean=torch.tensor([0.,0.,0.]), std=torch.tensor([1.,1.,1.]))) self.applycv = ApplyOpenCV(transform=cv2.threshold, class_kwargs=dict(thresh=100, maxval=100, type=cv2.THRESH_TRUNC)) self.preproc = PreprocTransform()
Example #16
Source File: transforms.py From Parsing-R-CNN with MIT License | 5 votes |
def __init__(self, brightness=None, contrast=None, saturation=None, hue=None, ): self.color_jitter = torchvision.transforms.ColorJitter( brightness=brightness, contrast=contrast, saturation=saturation, hue=hue,)
Example #17
Source File: transforms.py From DetNAS with MIT License | 5 votes |
def __init__(self, brightness=None, contrast=None, saturation=None, hue=None, ): self.color_jitter = torchvision.transforms.ColorJitter( brightness=brightness, contrast=contrast, saturation=saturation, hue=hue,)
Example #18
Source File: imbalance_cifar.py From BBN with MIT License | 5 votes |
def __init__(self, mode, cfg, root = './datasets/imbalance_cifar10', imb_type='exp', transform=None, target_transform=None, download=True): train = True if mode == "train" else False super(IMBALANCECIFAR10, self).__init__(root, train, transform, target_transform, download) self.cfg = cfg self.train = train self.dual_sample = True if cfg.TRAIN.SAMPLER.DUAL_SAMPLER.ENABLE and self.train else False rand_number = cfg.DATASET.IMBALANCECIFAR.RANDOM_SEED if self.train: np.random.seed(rand_number) random.seed(rand_number) imb_factor = self.cfg.DATASET.IMBALANCECIFAR.RATIO img_num_list = self.get_img_num_per_cls(self.cls_num, imb_type, imb_factor) self.gen_imbalanced_data(img_num_list) self.transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) else: self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) print("{} Mode: Contain {} images".format(mode, len(self.data))) if self.dual_sample or (self.cfg.TRAIN.SAMPLER.TYPE == "weighted sampler" and self.train): self.class_weight, self.sum_weight = self.get_weight(self.get_annotations(), self.cls_num) self.class_dict = self._get_class_dict()
Example #19
Source File: transforms.py From DetNAS with MIT License | 5 votes |
def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target
Example #20
Source File: transforms.py From DetNAS with MIT License | 5 votes |
def __init__(self, transforms): self.transforms = transforms
Example #21
Source File: query.py From deep-ranking with MIT License | 5 votes |
def __init__(self, root_dir, transform=None, loader = pil_loader): """ Args: csv_file (string): Path to the csv file with annotations. root_dir (string): Directory with all the images. transform (callable, optional): Optional transform to be applied on a sample. """ if transform == None : transform = torchvision.transforms.Compose([torchvision.transforms.Resize(224), torchvision.transforms.RandomHorizontalFlip(p=0.5), torchvision.transforms.RandomVerticalFlip(p=0.5), torchvision.transforms.ToTensor()]) self.root_dir = root_dir self.transform = transform self.loader = loader # class_dict -> n01443537 : 0 etc self.class_dict = {} # rev_dict -> 0 : n01443537 etc self.rev_dict = {} # image dict -> n01443537 : np.array([n01443537_0.JPEG n01443537_150.JPEG # n01443537_200.JPEG n01443537_251.JPEG etc]) self.image_dict = {} # big_dict -> idx : [img_name, class] self.big_dict = {} L = [] for i,j in enumerate(os.listdir(os.path.join(self.root_dir))): self.class_dict[j] = i self.rev_dict[i] = j self.image_dict[j] = np.array(os.listdir(os.path.join(self.root_dir,j,'images'))) for k,l in enumerate(os.listdir(os.path.join(self.root_dir,j,'images'))): L.append((l,i)) for i,j in enumerate(L): self.big_dict[i] = j self.num_classes = 200
Example #22
Source File: transforms.py From DetNAS with MIT License | 5 votes |
def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
Example #23
Source File: dataloader.py From imagenet18_old with The Unlicense | 5 votes |
def __call__(self, img, idx): target_ar = self.idx2ar[idx] if target_ar < 1: w = int(self.target_size/target_ar) size = (w//8*8, self.target_size) else: h = int(self.target_size*target_ar) size = (self.target_size, h//8*8) return torchvision.transforms.functional.center_crop(img, size)
Example #24
Source File: transforms.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __init__(self, transforms): self.transforms = transforms
Example #25
Source File: transforms.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __call__(self, image, target): for t in self.transforms: image, target = t(image, target) return image, target
Example #26
Source File: transforms.py From remote_sensing_object_detection_2019 with MIT License | 5 votes |
def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string
Example #27
Source File: utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, dboxes, size = (300, 300), val=False): # define vgg16 mean self.size = size self.val = val self.dboxes_ = dboxes #DefaultBoxes300() self.encoder = Encoder(self.dboxes_) self.crop = SSDCropping() self.img_trans = transforms.Compose([ transforms.Resize(self.size), #transforms.ColorJitter(brightness=0.125, contrast=0.5, # saturation=0.5, hue=0.05 #), #transforms.ToTensor(), FusedColorJitter(), ToTensor(), ]) self.hflip = RandomHorizontalFlip() # All Pytorch Tensor will be normalized # https://discuss.pytorch.org/t/how-to-preprocess-input-for-pre-trained-networks/683 normalization_mean = [0.485, 0.456, 0.406] normalization_std = [0.229, 0.224, 0.225] ssd_print(key=mlperf_log.DATA_NORMALIZATION_MEAN, value=normalization_mean) ssd_print(key=mlperf_log.DATA_NORMALIZATION_STD, value=normalization_std) self.normalize = transforms.Normalize(mean=normalization_mean, std=normalization_std) self.trans_val = transforms.Compose([ transforms.Resize(self.size), transforms.ToTensor(), self.normalize,])
Example #28
Source File: utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __getitem__(self, idx): img_id = self.img_keys[idx] img_data = self.images[img_id] fn = img_data[0] img_path = os.path.join(self.img_folder, fn) s = time.time() img = Image.open(img_path).convert("RGB") e = time.time() decode_time = e - s htot, wtot = img_data[1] bbox_sizes = [] bbox_labels = [] #for (xc, yc, w, h), bbox_label in img_data[2]: for (l,t,w,h), bbox_label in img_data[2]: r = l + w b = t + h #l, t, r, b = xc - 0.5*w, yc - 0.5*h, xc + 0.5*w, yc + 0.5*h bbox_size = (l/wtot, t/htot, r/wtot, b/htot) bbox_sizes.append(bbox_size) bbox_labels.append(bbox_label) bbox_sizes = torch.tensor(bbox_sizes) bbox_labels = torch.tensor(bbox_labels) s = time.time() if self.transform != None: img, (htot, wtot), bbox_sizes, bbox_labels = \ self.transform(img, (htot, wtot), bbox_sizes, bbox_labels) else: pass # img = transforms.ToTensor()(img) return img, img_id, (htot, wtot), bbox_sizes, bbox_labels # Implement a datareader for VOC dataset
Example #29
Source File: toy.py From Hydra with MIT License | 5 votes |
def toy(dataset, root='~/data/torchvision/', transforms=None): """Load a train and test datasets from torchvision.dataset. """ if not hasattr(torchvision.datasets, dataset): raise ValueError loader_def = getattr(torchvision.datasets, dataset) transform_funcs = [] if transforms is not None: for transform in transforms: if not hasattr(torchvision.transforms, transform['def']): raise ValueError transform_def = getattr(torchvision.transforms, transform['def']) transform_funcs.append(transform_def(**transform['kwargs'])) transform_funcs.append(torchvision.transforms.ToTensor()) composed_transform = torchvision.transforms.Compose(transform_funcs) trainset = loader_def( root=os.path.expanduser(root), train=True, download=True, transform=composed_transform) testset = loader_def( root=os.path.expanduser(root), train=False, download=True, transform=composed_transform) return trainset, testset
Example #30
Source File: transforms.py From Parsing-R-CNN with MIT License | 5 votes |
def __repr__(self): format_string = self.__class__.__name__ + "(" for t in self.transforms: format_string += "\n" format_string += " {0}".format(t) format_string += "\n)" return format_string