Python tensorflow.python.framework.ops.Operation() Examples
The following are 30
code examples of tensorflow.python.framework.ops.Operation().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.framework.ops
, or try the search function
.
Example #1
Source File: k_feature_decisions_to_data_then_nn_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testKFeatureTrainingConstruction(self): # pylint: disable=W0612 data = constant_op.constant( [[random.uniform(-1, 1) for i in range(self.params.num_features)] for _ in range(100)]) labels = [1 for _ in range(100)] with variable_scope.variable_scope( "KFeatureDecisionsToDataThenNNTest.testKFeatureTrainingContruction"): graph_builder = ( k_feature_decisions_to_data_then_nn.KFeatureDecisionsToDataThenNN( self.params)) graph = graph_builder.training_graph(data, labels, None) self.assertTrue(isinstance(graph, Operation))
Example #2
Source File: copy_elements.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def get_copied_op(org_instance, graph, scope=""): """Given an `Operation` instance from some `Graph`, returns its namesake from `graph`, under the specified scope (default `""`). If a copy of `org_instance` is present in `graph` under the given `scope`, it will be returned. Args: org_instance: An `Operation` from some `Graph`. graph: The `Graph` to be searched for a copr of `org_instance`. scope: The scope `org_instance` is present in. Returns: The `Operation` copy from `graph`. """ #The name of the copied instance if scope != '': new_name = scope + '/' + org_instance.name else: new_name = org_instance.name return graph.as_graph_element(new_name, allow_tensor=True, allow_operation=True)
Example #3
Source File: reroute.py From lambda-packs with MIT License | 6 votes |
def reroute_ts(ts0, ts1, can_modify=None, cannot_modify=None): """For each tensor's pair, replace the end of t1 by the end of t0. B0 B1 B0 B1 | | => |/ A0 A1 A0 A1 The end of the tensors in ts1 are left dangling. Args: ts0: an object convertible to a list of `tf.Tensor`. ts1: an object convertible to a list of `tf.Tensor`. can_modify: iterable of operations which can be modified. Any operation outside within_ops will be left untouched by this function. cannot_modify: iterable of operations which cannot be modified. Any operation within cannot_modify will be left untouched by this function. Returns: The number of individual modifications made by the function. Raises: TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor. TypeError: if can_modify or cannot_modify is not None and cannot be converted to a list of tf.Operation. """ return _reroute_ts(ts0, ts1, _RerouteMode.a2b, can_modify, cannot_modify)
Example #4
Source File: control_flow_ops.py From lambda-packs with MIT License | 6 votes |
def _BuildCondTensor(self, v): if isinstance(v, ops.Operation): # Use pivot as the proxy for this op. return with_dependencies([v], self._pivot) elif isinstance(v, (ops.IndexedSlices, sparse_tensor.SparseTensor)): values = self._ProcessOutputTensor(v.values) indices = self._ProcessOutputTensor(v.indices) if isinstance(v, ops.IndexedSlices): dense_shape = v.dense_shape if dense_shape is not None: dense_shape = self._ProcessOutputTensor(dense_shape) return ops.IndexedSlices(values, indices, dense_shape) else: dense_shape = self._ProcessOutputTensor(v.dense_shape) return sparse_tensor.SparseTensor(indices, values, dense_shape) else: v = nest.map_structure(_convert_tensorarray_to_flow, v) return self._ProcessOutputTensor(ops.convert_to_tensor(v))
Example #5
Source File: cli_shared.py From lambda-packs with MIT License | 6 votes |
def _get_fetch_names(fetches): """Get a flattened list of the names in run() call fetches. Args: fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an Operation or a Variable. It may also be nested lists, tuples or dicts. See doc of `Session.run()` for more details. Returns: (list of str) A flattened list of fetch names from `fetches`. """ lines = [] if isinstance(fetches, (list, tuple)): for fetch in fetches: lines.extend(_get_fetch_names(fetch)) elif isinstance(fetches, dict): for key in fetches: lines.extend(_get_fetch_names(fetches[key])) else: # This ought to be a Tensor, an Operation or a Variable, for which the name # attribute should be available. (Bottom-out condition of the recursion.) lines.append(_get_fetch_name(fetches)) return lines
Example #6
Source File: stepper.py From lambda-packs with MIT License | 6 votes |
def is_placeholder(self, graph_element_name): """Check whether a graph element is a Placeholder, by name. Args: graph_element_name: (str) Name of the tensor or op to be tested. Returns: (bool) Whether the graph element of the specified name is a Placeholder op or the output Tensor of a Placeholder op. Raises: ValueError: If graph_element_name is not in the transitive closure of the stepper instance. """ node_name = self._get_node_name(graph_element_name) if node_name not in self.sorted_nodes(): raise ValueError( "%s is not in the transitive closure of this NodeStepper " "instance" % graph_element_name) graph_element = self._sess.graph.as_graph_element(graph_element_name) if not isinstance(graph_element, ops.Operation): graph_element = graph_element.op return graph_element.type == "Placeholder"
Example #7
Source File: reroute.py From lambda-packs with MIT License | 6 votes |
def swap_ts(ts0, ts1, can_modify=None, cannot_modify=None): """For each tensor's pair, swap the end of (t0,t1). B0 B1 B0 B1 | | => X A0 A1 A0 A1 Args: ts0: an object convertible to a list of `tf.Tensor`. ts1: an object convertible to a list of `tf.Tensor`. can_modify: iterable of operations which can be modified. Any operation outside within_ops will be left untouched by this function. cannot_modify: iterable of operations which cannot be modified. Any operation within cannot_modify will be left untouched by this function. Returns: The number of individual modifications made by the function. Raises: TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor. TypeError: if can_modify or cannot_modify is not None and cannot be converted to a list of tf.Operation. """ return _reroute_ts(ts0, ts1, _RerouteMode.swap, can_modify, cannot_modify)
Example #8
Source File: reroute.py From lambda-packs with MIT License | 6 votes |
def remove_control_inputs(op, cops): """Remove the control inputs cops from co. Warning: this function is directly manipulating the internals of the `tf.Graph`. Args: op: a `tf.Operation` from which to remove the control inputs. cops: an object convertible to a list of `tf.Operation`. Raises: TypeError: if op is not a `tf.Operation`. ValueError: if any cop in cops is not a control input of op. """ if not isinstance(op, _tf_ops.Operation): raise TypeError("Expected a tf.Operation, got: {}", type(op)) cops = _util.make_list_of_op(cops, allow_graph=False) for cop in cops: if cop not in op.control_inputs: raise ValueError("{} is not a control_input of {}".format(op.name, cop.name)) # pylint: disable=protected-access op._control_inputs = [cop for cop in op._control_inputs if cop not in cops] op._recompute_node_def() # pylint: enable=protected-access
Example #9
Source File: reroute.py From lambda-packs with MIT License | 6 votes |
def add_control_inputs(op, cops): """Add the control inputs cops to op. Warning: this function is directly manipulating the internals of the tf.Graph. Args: op: a tf.Operation to which the control inputs are added. cops: an object convertible to a list of `tf.Operation`. Raises: TypeError: if op is not a tf.Operation ValueError: if any cop in cops is already a control input of op. """ if not isinstance(op, _tf_ops.Operation): raise TypeError("Expected a tf.Operation, got: {}", type(op)) cops = _util.make_list_of_op(cops, allow_graph=False) for cop in cops: if cop in op.control_inputs: raise ValueError("{} is already a control_input of {}".format(cop.name, op.name)) # pylint: disable=protected-access op._control_inputs += cops op._recompute_node_def() # pylint: enable=protected-access
Example #10
Source File: util.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def find_corresponding(targets, dst_graph, dst_scope="", src_scope=""): """Find corresponding ops/tensors in a different graph. `targets` is a Python tree, that is, a nested structure of iterable (list, tupple, dictionary) whose leaves are instances of `tf.Tensor` or `tf.Operation` Args: targets: A Python tree containing `tf.Tensor` or `tf.Operation` belonging to the original graph. dst_graph: The graph in which the corresponding graph element must be found. dst_scope: A scope which is prepended to the name to look for. src_scope: A scope which is removed from the original of `top` name. Returns: A Python tree containin the corresponding tf.Tensor` or a `tf.Operation`. Raises: ValueError: if `src_name` does not start with `src_scope`. TypeError: if `top` is not a `tf.Tensor` or a `tf.Operation` KeyError: If the corresponding graph element cannot be found. """ def func(top): return find_corresponding_elem(top, dst_graph, dst_scope, src_scope) return transform_tree(targets, func)
Example #11
Source File: util.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def get_consuming_ops(ts): """Return all the consuming ops of the tensors in ts. Args: ts: a list of `tf.Tensor` Returns: A list of all the consuming `tf.Operation` of the tensors in `ts`. Raises: TypeError: if ts cannot be converted to a list of `tf.Tensor`. """ ts = make_list_of_t(ts, allow_graph=False) ops = [] for t in ts: for op in t.consumers(): if op not in ops: ops.append(op) return ops
Example #12
Source File: util.py From lambda-packs with MIT License | 6 votes |
def get_consuming_ops(ts): """Return all the consuming ops of the tensors in ts. Args: ts: a list of `tf.Tensor` Returns: A list of all the consuming `tf.Operation` of the tensors in `ts`. Raises: TypeError: if ts cannot be converted to a list of `tf.Tensor`. """ ts = make_list_of_t(ts, allow_graph=False) ops = [] for t in ts: for op in t.consumers(): if op not in ops: ops.append(op) return ops
Example #13
Source File: util.py From lambda-packs with MIT License | 6 votes |
def find_corresponding(targets, dst_graph, dst_scope="", src_scope=""): """Find corresponding ops/tensors in a different graph. `targets` is a Python tree, that is, a nested structure of iterable (list, tupple, dictionary) whose leaves are instances of `tf.Tensor` or `tf.Operation` Args: targets: A Python tree containing `tf.Tensor` or `tf.Operation` belonging to the original graph. dst_graph: The graph in which the corresponding graph element must be found. dst_scope: A scope which is prepended to the name to look for. src_scope: A scope which is removed from the original of `top` name. Returns: A Python tree containin the corresponding tf.Tensor` or a `tf.Operation`. Raises: ValueError: if `src_name` does not start with `src_scope`. TypeError: if `top` is not a `tf.Tensor` or a `tf.Operation` KeyError: If the corresponding graph element cannot be found. """ def func(top): return find_corresponding_elem(top, dst_graph, dst_scope, src_scope) return transform_tree(targets, func)
Example #14
Source File: util.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, graph): """Create a dictionary of control-output dependencies. Args: graph: a `tf.Graph`. Returns: A dictionary where a key is a `tf.Operation` instance and the corresponding value is a list of all the ops which have the key as one of their control-input dependencies. Raises: TypeError: graph is not a `tf.Graph`. """ if not isinstance(graph, tf_ops.Graph): raise TypeError("Expected a tf.Graph, got: {}".format(type(graph))) self._control_outputs = {} self._graph = graph self._version = None self._build()
Example #15
Source File: tensor_forest_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testTrainingConstructionRegression(self): input_data = [[-1., 0.], [-1., 2.], # node 1 [1., 0.], [1., -2.]] # node 2 input_labels = [0, 1, 2, 3] params = tensor_forest.ForestHParams( num_classes=4, num_features=2, num_trees=10, max_nodes=1000, split_after_samples=25, regression=True).fill() graph_builder = tensor_forest.RandomForestGraphs(params) graph = graph_builder.training_graph(input_data, input_labels) self.assertTrue(isinstance(graph, ops.Operation))
Example #16
Source File: tensor_forest_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def testTrainingConstructionClassificationSparse(self): input_data = sparse_tensor.SparseTensor( indices=[[0, 0], [0, 3], [1, 0], [1, 7], [2, 1], [3, 9]], values=[-1.0, 0.0, -1., 2., 1., -2.0], dense_shape=[4, 10]) input_labels = [0, 1, 2, 3] params = tensor_forest.ForestHParams( num_classes=4, num_features=10, num_trees=10, max_nodes=1000, split_after_samples=25).fill() graph_builder = tensor_forest.RandomForestGraphs(params) graph = graph_builder.training_graph(input_data, input_labels) self.assertTrue(isinstance(graph, ops.Operation))
Example #17
Source File: reroute.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def swap_ts(ts0, ts1, can_modify=None, cannot_modify=None): """For each tensor's pair, swap the end of (t0,t1). B0 B1 B0 B1 | | => X A0 A1 A0 A1 Args: ts0: an object convertible to a list of `tf.Tensor`. ts1: an object convertible to a list of `tf.Tensor`. can_modify: iterable of operations which can be modified. Any operation outside within_ops will be left untouched by this function. cannot_modify: iterable of operations which cannot be modified. Any operation within cannot_modify will be left untouched by this function. Returns: The number of individual modifications made by the function. Raises: TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor. TypeError: if can_modify or cannot_modify is not None and cannot be converted to a list of tf.Operation. """ return _reroute_ts(ts0, ts1, _RerouteMode.swap, can_modify, cannot_modify)
Example #18
Source File: reroute.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def reroute_ts(ts0, ts1, can_modify=None, cannot_modify=None): """For each tensor's pair, replace the end of t1 by the end of t0. B0 B1 B0 B1 | | => |/ A0 A1 A0 A1 The end of the tensors in ts1 are left dangling. Args: ts0: an object convertible to a list of `tf.Tensor`. ts1: an object convertible to a list of `tf.Tensor`. can_modify: iterable of operations which can be modified. Any operation outside within_ops will be left untouched by this function. cannot_modify: iterable of operations which cannot be modified. Any operation within cannot_modify will be left untouched by this function. Returns: The number of individual modifications made by the function. Raises: TypeError: if ts0 or ts1 cannot be converted to a list of tf.Tensor. TypeError: if can_modify or cannot_modify is not None and cannot be converted to a list of tf.Operation. """ return _reroute_ts(ts0, ts1, _RerouteMode.a2b, can_modify, cannot_modify)
Example #19
Source File: reroute.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def remove_control_inputs(op, cops): """Remove the control inputs cops from co. Warning: this function is directly manipulating the internals of the `tf.Graph`. Args: op: a `tf.Operation` from which to remove the control inputs. cops: an object convertible to a list of `tf.Operation`. Raises: TypeError: if op is not a `tf.Operation`. ValueError: if any cop in cops is not a control input of op. """ if not isinstance(op, tf_ops.Operation): raise TypeError("Expected a tf.Operation, got: {}", type(op)) cops = util.make_list_of_op(cops, allow_graph=False) for cop in cops: if cop not in op.control_inputs: raise ValueError("{} is not a control_input of {}".format(op.name, cop.name)) # pylint: disable=protected-access op._control_inputs = [cop for cop in op._control_inputs if cop not in cops] op._recompute_node_def() # pylint: enable=protected-access
Example #20
Source File: reroute.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def add_control_inputs(op, cops): """Add the control inputs cops to co. Warning: this function is directly manipulating the internals of the tf.Graph. Args: op: a tf.Operation to which the control inputs are added. cops: an object convertible to a list of `tf.Operation`. Raises: TypeError: if op is not a tf.Operation ValueError: if any cop in cops is already a control input of op. """ if not isinstance(op, tf_ops.Operation): raise TypeError("Expected a tf.Operation, got: {}", type(op)) cops = util.make_list_of_op(cops, allow_graph=False) for cop in cops: if cop in op.control_inputs: raise ValueError("{} is already a control_input of {}".format(op.name, cop.name)) # pylint: disable=protected-access op._control_inputs += cops op._recompute_node_def() # pylint: enable=protected-access
Example #21
Source File: transform.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def assign_renamed_collections_handler(info, elem, elem_): """Add the transformed elem to the (renamed) collections of elem. A collection is renamed only if is not a known key, as described in `tf.GraphKeys`. Args: info: Transform._TmpInfo instance. elem: the original element (`tf.Tensor` or `tf.Operation`) elem_: the transformed element """ known_collection_names = util.get_predefined_collection_names() for name, collection in iteritems(info.collections): if elem not in collection: continue if name in known_collection_names: transformed_name = name else: transformed_name = info.new_name(name) info.graph_.add_to_collection(transformed_name, elem_)
Example #22
Source File: cli_shared.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _get_fetch_names(fetches): """Get a flattened list of the names in run() call fetches. Args: fetches: Fetches of the `Session.run()` call. It maybe a Tensor, an Operation or a Variable. It may also be nested lists, tuples or dicts. See doc of `Session.run()` for more details. Returns: (list of str) A flattened list of fetch names from `fetches`. """ lines = [] if isinstance(fetches, (list, tuple)): for fetch in fetches: lines.extend(_get_fetch_names(fetch)) elif isinstance(fetches, dict): for key in fetches: lines.extend(_get_fetch_names(fetches[key])) else: # This ought to be a Tensor, an Operation or a Variable, for which the name # attribute should be available. (Bottom-out condition of the recursion.) lines.append(_get_fetch_name(fetches)) return lines
Example #23
Source File: stepper.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def is_placeholder(self, graph_element_name): """Check whether a graph element is a Placeholder, by name. Args: graph_element_name: (str) Name of the tensor or op to be tested. Returns: (bool) Whether the graph element of the specified name is a Placeholder op or the output Tensor of a Placeholder op. Raises: ValueError: If graph_element_name is not in the transitive closure of the stepper instance. """ node_name = self._get_node_name(graph_element_name) if node_name not in self.sorted_nodes(): raise ValueError( "%s is not in the transitive closure of this NodeStepper " "instance" % graph_element_name) graph_element = self._sess.graph.as_graph_element(graph_element_name) if not isinstance(graph_element, ops.Operation): graph_element = graph_element.op return graph_element.type == "Placeholder"
Example #24
Source File: util.py From lambda-packs with MIT License | 6 votes |
def __init__(self, graph): """Create a dictionary of control-output dependencies. Args: graph: a `tf.Graph`. Returns: A dictionary where a key is a `tf.Operation` instance and the corresponding value is a list of all the ops which have the key as one of their control-input dependencies. Raises: TypeError: graph is not a `tf.Graph`. """ if not isinstance(graph, tf_ops.Graph): raise TypeError("Expected a tf.Graph, got: {}".format(type(graph))) self._control_outputs = {} self._graph = graph self._version = None self._build()
Example #25
Source File: session.py From deep_image_model with Apache License 2.0 | 5 votes |
def build_results(self, values): if not values: # 'Operation' case return None else: return self._contraction_fn(values)
Example #26
Source File: transform.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _get_transformed_map(self, top): """Return the correct container depending on the type of `top`.""" if isinstance(top, tf_ops.Operation): return self._transformed_ops elif isinstance(top, tf_ops.Tensor): return self._transformed_ts else: raise TypeError( "Expected a tf.Tensor or a tf.Operation, got a {}".format( type(top)))
Example #27
Source File: util.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def find_corresponding_elem(target, dst_graph, dst_scope="", src_scope=""): """Find corresponding op/tensor in a different graph. Args: target: A `tf.Tensor` or a `tf.Operation` belonging to the original graph. dst_graph: The graph in which the corresponding graph element must be found. dst_scope: A scope which is prepended to the name to look for. src_scope: A scope which is removed from the original of `target` name. Returns: The corresponding tf.Tensor` or a `tf.Operation`. Raises: ValueError: if `src_name` does not start with `src_scope`. TypeError: if `target` is not a `tf.Tensor` or a `tf.Operation` KeyError: If the corresponding graph element cannot be found. """ src_name = target.name if src_scope: src_scope = scope_finalize(src_scope) if not src_name.startswidth(src_scope): raise ValueError("{} does not start with {}".format(src_name, src_scope)) src_name = src_name[len(src_scope):] dst_name = src_name if dst_scope: dst_scope = scope_finalize(dst_scope) dst_name = dst_scope + dst_name if isinstance(target, tf_ops.Tensor): return dst_graph.get_tensor_by_name(dst_name) if isinstance(target, tf_ops.Operation): return dst_graph.get_operation_by_name(dst_name) raise TypeError("Expected tf.Tensor or tf.Operation, got: {}", type(target))
Example #28
Source File: session.py From deep_image_model with Apache License 2.0 | 5 votes |
def __init__(self, graph, fetches, feeds): """Creates a fetch handler. Args: graph: Graph of the fetches. Used to check for fetchability and to convert all fetches to tensors or ops as needed. fetches: An arbitrary fetch structure: singleton, list, tuple, namedtuple, or dict. feeds: A feed dict where keys are fully resolved tensor names. """ with graph.as_default(): self._fetch_mapper = _FetchMapper.for_fetch(fetches) self._fetches = [] self._targets = [] self._feeds = feeds self._ops = [] self._fetch_handles = {} for fetch in self._fetch_mapper.unique_fetches(): fetch_name = compat.as_bytes(fetch.name) if isinstance(fetch, ops.Operation): self._assert_fetchable(graph, fetch) self._targets.append(fetch_name) self._ops.append(True) else: self._assert_fetchable(graph, fetch.op) self._fetches.append(fetch_name) self._ops.append(False) # Remember the fetch if it is for a tensor handle. if isinstance(fetch, ops.Tensor) and fetch.op.type == 'GetSessionHandle': self._fetch_handles[fetch_name] = fetch.op.inputs[0].dtype self._final_fetches = [x for x in self._fetches if x not in feeds]
Example #29
Source File: test_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def _WeMustGoDeeper(self, msg): with self.assertRaisesOpError(msg): node_def = ops._NodeDef("op_type", "name") node_def_orig = ops._NodeDef("op_type_orig", "orig") op_orig = ops.Operation(node_def_orig, ops.get_default_graph()) op = ops.Operation(node_def, ops.get_default_graph(), original_op=op_orig) raise errors.UnauthenticatedError(node_def, op, "true_err")
Example #30
Source File: stepper.py From lambda-packs with MIT License | 5 votes |
def is_feedable(self, name): """Determine if a graph element if feedable. Args: name: (str) name of the graph element (Tensor or Operation) Returns: (bool) whether the graph element is feedable. """ if not isinstance(name, six.string_types): raise TypeError("Expected type str; got type %s" % type(name)) elem = self._sess.graph.as_graph_element(name) return self._sess.graph.is_feedable(elem)