Python google.protobuf.json_format.ParseDict() Examples
The following are 30
code examples of google.protobuf.json_format.ParseDict().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
google.protobuf.json_format
, or try the search function
.
Example #1
Source File: engine.py From recipes-py with Apache License 2.0 | 6 votes |
def _get_engine_properties(properties): """Retrieve and resurrect JSON serialized engine properties from all properties passed to recipe. The serialized value is associated with key '$recipe_engine'. Args: * properties (dict): All input properties for passed to recipe Returns a engine_properties_pb2.EngineProperties object """ return jsonpb.ParseDict( properties.get('$recipe_engine', {}), engine_properties_pb2.EngineProperties(), ignore_unknown_fields=True)
Example #2
Source File: model.py From python-bigquery with Apache License 2.0 | 6 votes |
def from_api_repr(cls, resource): """Factory: construct a model reference given its API representation Args: resource (Dict[str, object]): Model reference representation returned from the API Returns: google.cloud.bigquery.model.ModelReference: Model reference parsed from ``resource``. """ ref = cls() # Keep a reference to the resource as a workaround to find unknown # field values. ref._properties = resource ref._proto = json_format.ParseDict( resource, types.ModelReference(), ignore_unknown_fields=True ) return ref
Example #3
Source File: bigquery_dts.py From airflow with Apache License 2.0 | 6 votes |
def _disable_auto_scheduling(config: Union[dict, TransferConfig]) -> TransferConfig: """ In the case of Airflow, the customer needs to create a transfer config with the automatic scheduling disabled (UI, CLI or an Airflow operator) and then trigger a transfer run using a specialized Airflow operator that will call start_manual_transfer_runs. :param config: Data transfer configuration to create. :type config: Union[dict, google.cloud.bigquery_datatransfer_v1.types.TransferConfig] """ config = MessageToDict(config) if isinstance(config, TransferConfig) else config new_config = copy(config) schedule_options = new_config.get("schedule_options") if schedule_options: disable_auto_scheduling = schedule_options.get( "disable_auto_scheduling", None ) if disable_auto_scheduling is None: schedule_options["disable_auto_scheduling"] = True else: new_config["schedule_options"] = {"disable_auto_scheduling": True} return ParseDict(new_config, TransferConfig())
Example #4
Source File: kubernetes_runner_test.py From tfx with Apache License 2.0 | 5 votes |
def _CreateKubernetesRunner(self, k8s_config_dict=None): self._serving_spec = infra_validator_pb2.ServingSpec() json_format.ParseDict({ 'tensorflow_serving': { 'tags': ['1.15.0']}, 'kubernetes': k8s_config_dict or {}, 'model_name': self._model_name, }, self._serving_spec) serving_binary = serving_bins.parse_serving_binaries(self._serving_spec)[0] return kubernetes_runner.KubernetesRunner( model_path=path_utils.serving_model_path(self._model.uri), serving_binary=serving_binary, serving_spec=self._serving_spec)
Example #5
Source File: common_serializers_test.py From Cirq with Apache License 2.0 | 5 votes |
def op_proto(json_dict: Dict) -> v2.program_pb2.Operation: op = v2.program_pb2.Operation() json_format.ParseDict(json_dict, op) return op
Example #6
Source File: api.py From tfjs-to-tf with MIT License | 5 votes |
def _convert_graph_def(message_dict: Dict[str, Any]) -> GraphDef: """ Convert JSON to TF GraphDef message Args: message_dict: deserialised JSON message Returns: TF GraphDef message """ message_dict = quirks.fix_node_attributes(message_dict) return ParseDict(message_dict, tf.compat.v1.GraphDef())
Example #7
Source File: testutils.py From tfjs-to-tf with MIT License | 5 votes |
def graph_to_model(graph: Union[tf.Graph, GraphDef, str], weight_dict: Dict[str, Tensor] = {}) -> Callable: """Convert a TF v1 frozen graph to a TF v2 function for easy inference""" graph_def = graph if isinstance(graph, tf.Graph): graph_def = graph.as_graph_def() elif isinstance(graph, str): # graph is a file name: load graph from disk if graph.endswith('.json'): with open(graph, 'r') as json_file: message_dict = json.loads(json_file.read()) graph_def = ParseDict(message_dict, GraphDef()) elif graph.endswith('.h5'): # Keras model - just load and return as-is return tf.keras.models.load_model(graph) else: with open(graph, 'rb') as proto_file: string = proto_file.read() graph_def = GraphDef() graph_def.ParseFromString(string) tensor_dict = dict() def _imports_graph_def(): for name, data in weight_dict.items(): tensor_dict[name] = tf.convert_to_tensor(data) tf.graph_util.import_graph_def(graph_def, tensor_dict, name='') wrapped_import = tf.compat.v1.wrap_function(_imports_graph_def, []) import_graph = wrapped_import.graph inputs = [(node.name+':0') for node in get_inputs(graph_def)] outputs = [(node.name+':0') for node in get_outputs(graph_def)] return wrapped_import.prune( tf.nest.map_structure(import_graph.as_graph_element, inputs), tf.nest.map_structure(import_graph.as_graph_element, outputs))
Example #8
Source File: testutils.py From tfjs-to-tf with MIT License | 5 votes |
def node_proto_from_json(node_json: str) -> NodeDef: """Return a nodedef protobuf message from a raw JSON string""" node_dict = json.loads(node_json) node_def = ParseDict(node_dict, NodeDef()) return node_def
Example #9
Source File: routine.py From python-bigquery with Apache License 2.0 | 5 votes |
def return_type(self): """google.cloud.bigquery_v2.types.StandardSqlDataType: Return type of the routine. If absent, the return type is inferred from :attr:`~google.cloud.bigquery.routine.Routine.body` at query time in each query that references this routine. If present, then the evaluated result will be cast to the specified returned type at query time. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/routines#Routine.FIELDS.return_type """ resource = self._properties.get(self._PROPERTY_TO_API_FIELD["return_type"]) if not resource: return resource output = google.cloud.bigquery_v2.types.StandardSqlDataType() output = json_format.ParseDict(resource, output, ignore_unknown_fields=True) return output
Example #10
Source File: routine.py From python-bigquery with Apache License 2.0 | 5 votes |
def data_type(self): """Optional[google.cloud.bigquery_v2.types.StandardSqlDataType]: Type of a variable, e.g., a function argument. See: https://cloud.google.com/bigquery/docs/reference/rest/v2/routines#Argument.FIELDS.data_type """ resource = self._properties.get(self._PROPERTY_TO_API_FIELD["data_type"]) if not resource: return resource output = google.cloud.bigquery_v2.types.StandardSqlDataType() output = json_format.ParseDict(resource, output, ignore_unknown_fields=True) return output
Example #11
Source File: model.py From python-bigquery with Apache License 2.0 | 5 votes |
def from_api_repr(cls, resource): """Factory: construct a model resource given its API representation Args: resource (Dict[str, object]): Model resource representation from the API Returns: google.cloud.bigquery.model.Model: Model parsed from ``resource``. """ this = cls(None) # Keep a reference to the resource as a workaround to find unknown # field values. this._properties = resource # Convert from millis-from-epoch to timestamp well-known type. # TODO: Remove this hack once CL 238585470 hits prod. resource = copy.deepcopy(resource) for training_run in resource.get("trainingRuns", ()): start_time = training_run.get("startTime") if not start_time or "-" in start_time: # Already right format? continue start_time = datetime_helpers.from_microseconds(1e3 * float(start_time)) training_run["startTime"] = datetime_helpers.to_rfc3339(start_time) this._proto = json_format.ParseDict( resource, types.Model(), ignore_unknown_fields=True ) return this
Example #12
Source File: tensorflow_serving_client_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_response( payload: Dict[Text, Any]) -> get_model_status_pb2.GetModelStatusResponse: result = get_model_status_pb2.GetModelStatusResponse() json_format.ParseDict(payload, result) return result
Example #13
Source File: executor_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_serving_spec( payload: Dict[Text, Any]) -> infra_validator_pb2.ServingSpec: result = infra_validator_pb2.ServingSpec() json_format.ParseDict(payload, result) return result
Example #14
Source File: executor_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_validation_spec( payload: Dict[Text, Any]) -> infra_validator_pb2.ValidationSpec: result = infra_validator_pb2.ValidationSpec() json_format.ParseDict(payload, result) return result
Example #15
Source File: executor_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_request_spec( payload: Dict[Text, Any]) -> infra_validator_pb2.RequestSpec: result = infra_validator_pb2.RequestSpec() json_format.ParseDict(payload, result) return result
Example #16
Source File: arg_func_langs_test.py From Cirq with Apache License 2.0 | 5 votes |
def test_serialize_conversion(value: ARG_LIKE, proto: v2.program_pb2.Arg): msg = v2.program_pb2.Arg() json_format.ParseDict(proto, msg) packed = json_format.MessageToDict(_arg_to_proto(value, arg_function_language=''), including_default_value_fields=True, preserving_proto_field_name=True, use_integers_for_enums=True) assert packed == proto
Example #17
Source File: local_docker_runner_test.py From tfx with Apache License 2.0 | 5 votes |
def _create_serving_spec(payload: Dict[Text, Any]): result = infra_validator_pb2.ServingSpec() json_format.ParseDict(payload, result) return result
Example #18
Source File: request_builder_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_saved_model(payload: Dict[Text, Any]): result = saved_model_pb2.SavedModel() json_format.ParseDict(payload, result) return result
Example #19
Source File: request_builder_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_signature_def(payload: Dict[Text, Any]): result = meta_graph_pb2.SignatureDef() json_format.ParseDict(payload, result) return result
Example #20
Source File: request_builder_test.py From tfx with Apache License 2.0 | 5 votes |
def _make_request_spec(payload: Dict[Text, Any]): result = infra_validator_pb2.RequestSpec() json_format.ParseDict(payload, result) return result
Example #21
Source File: taranis_service.py From taranis with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_database(self, database: NewDatabaseModel): t = int((datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() * 1000) new_db = dict(name=database.name, created_at=t, updated_at=t, size=0) res = self.repo.create_one_database(new_db) # TODO Check result return ParseDict(new_db, DatabaseModel(), ignore_unknown_fields=True)
Example #22
Source File: taranis_service.py From taranis with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_database(self, db_name): database = self.repo.find_one_database_by_name(db_name) if database is None: raise TaranisNotFoundError("Database {} not found".format(db_name)) return ParseDict(database, DatabaseModel(), ignore_unknown_fields=True)
Example #23
Source File: taranis_service.py From taranis with BSD 3-Clause "New" or "Revised" License | 5 votes |
def create_index(self, index: NewIndexModel): try: t = int((datetime.utcnow() - datetime(1970, 1, 1)).total_seconds() * 1000) new_index = IndexModel() new_index.created_at = t new_index.updated_at = t new_index.state = IndexModel.State.CREATED new_dict_index = MessageToDict(ParseDict(MessageToDict(index, preserving_proto_field_name=True), new_index), preserving_proto_field_name=True) res = self.repo.create_one_index(new_dict_index) config = json.loads(index.config) if config["index_type"] == "IVFPQ": dimension = config["dimension"] n_list = config["n_list"] n_probes = config["n_probes"] index_type = "IVF{},PQ{}np".format(n_list, n_probes) metric_type = cpp_taranis.Faiss.MetricType.METRIC_L2 if config["metric"] == "METRIC_L1": metric_type = cpp_taranis.Faiss.MetricType.METRIC_L1 elif config["metric"] == "METRIC_L2": metric_type = cpp_taranis.Faiss.MetricType.METRIC_L2 self.faiss_wrapper.create_index(index.db_name, index.index_name, dimension, index_type, metric_type, n_probes) else: raise TaranisNotImplementedError( "Can't create index because of unknown index type {}".format(index.config["index_type"])) except DuplicateKeyError as e: raise TaranisAlreadyExistsError("Index name {} already exists".format(index.index_name)) return index
Example #24
Source File: taranis_service.py From taranis with BSD 3-Clause "New" or "Revised" License | 5 votes |
def get_index(self, db_name, index_name): index = self.faiss_wrapper.get_index(db_name, index_name) if index is None: raise TaranisNotFoundError("Can't find index {} for database {}".format(index_name, db_name)) res = self.repo.find_one_index_by_index_name_and_db_name(index_name, db_name) if res is None: raise TaranisNotFoundError("Can't find index {} for database {}".format(index_name, db_name)) return ParseDict(res, IndexModel(), ignore_unknown_fields=True)
Example #25
Source File: json_format_test.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def testExtensionToDictAndBack(self): message = unittest_mset_pb2.TestMessageSetContainer() ext1 = unittest_mset_pb2.TestMessageSetExtension1.message_set_extension ext2 = unittest_mset_pb2.TestMessageSetExtension2.message_set_extension message.message_set.Extensions[ext1].i = 23 message.message_set.Extensions[ext2].str = 'foo' message_dict = json_format.MessageToDict( message ) parsed_message = unittest_mset_pb2.TestMessageSetContainer() json_format.ParseDict(message_dict, parsed_message) self.assertEqual(message, parsed_message)
Example #26
Source File: json_format_test.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def testParseDict(self): expected = 12345 js_dict = {'int32Value': expected} message = json_format_proto3_pb2.TestMessage() json_format.ParseDict(js_dict, message) self.assertEqual(expected, message.int32_value)
Example #27
Source File: json_format_test.py From keras-lambda with MIT License | 5 votes |
def testParseDict(self): expected = 12345 js_dict = {'int32Value': expected} message = json_format_proto3_pb2.TestMessage() json_format.ParseDict(js_dict, message) self.assertEqual(expected, message.int32_value)
Example #28
Source File: test_stackdriver.py From airflow with Apache License 2.0 | 5 votes |
def test_stackdriver_disable_notification_channel(self, mock_channel_client, mock_get_creds_and_project_id): hook = stackdriver.StackdriverHook() notification_channel_enabled = ParseDict(TEST_NOTIFICATION_CHANNEL_1, monitoring_v3.types.notification_pb2.NotificationChannel()) notification_channel_disabled = ParseDict(TEST_NOTIFICATION_CHANNEL_2, monitoring_v3.types.notification_pb2.NotificationChannel()) mock_channel_client.return_value.list_notification_channels.return_value = [ notification_channel_enabled, notification_channel_disabled ] hook.disable_notification_channels( filter_=TEST_FILTER, project_id=PROJECT_ID, ) notification_channel_enabled.enabled.value = False # pylint: disable=no-member mask = monitoring_v3.types.field_mask_pb2.FieldMask() mask.paths.append('enabled') # pylint: disable=no-member mock_channel_client.return_value.update_notification_channel.assert_called_once_with( notification_channel=notification_channel_enabled, update_mask=mask, retry=DEFAULT, timeout=DEFAULT, metadata=None, )
Example #29
Source File: api.py From recipes-py with Apache License 2.0 | 5 votes |
def initialize(self): # Add other LUCI_CONTEXT sections in the following dict to support # modification through this module. init_sections = { 'luciexe': sections_pb2.LUCIExe, } ctx = self._lucictx_client.context for section_key, section_msg_class in init_sections.iteritems(): if section_key in ctx: self._state.luci_context[section_key] = ( jsonpb.ParseDict(ctx[section_key], section_msg_class(), ignore_unknown_fields=True))
Example #30
Source File: common.py From recipes-py with Apache License 2.0 | 5 votes |
def deserialize(data): """Deserializes an invocation bundle. Opposite of serialize().""" ret = {} def parse_msg(msg, body): return json_format.ParseDict( body, msg, # Do not fail the build because recipe's proto copy is stale. ignore_unknown_fields=True ) for line in data.splitlines(): entry = json.loads(line) assert isinstance(entry, dict), line inv_id = entry['invocationId'] inv = ret.get(inv_id) if not inv: inv = Invocation() ret[inv_id] = inv inv_dict = entry.get('invocation') if inv_dict is not None: # Invocation is special because there can be only one invocation # per invocation id. parse_msg(inv.proto, inv_dict) continue found = False for attr_name, type, key in Invocation._COLLECTIONS: if key in entry: found = True collection = getattr(inv, attr_name) collection.append(parse_msg(type(), entry[key])) break assert found, entry return ret