Python _pickle.dump() Examples
The following are 30
code examples of _pickle.dump().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
_pickle
, or try the search function
.
Example #1
Source File: data_utils.py From youtube-gesture-dataset with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, basepath, vid): # load skeleton data (and save it to pickle for next load) pickle_file = glob.glob(basepath + '/' + vid + '.pickle') if pickle_file: with open(pickle_file[0], 'rb') as file: self.skeletons = pickle.load(file) else: files = glob.glob(basepath + '/' + vid + '/*.json') if len(files) > 10: files = sorted(files) self.skeletons = [] for file in files: self.skeletons.append(self.read_skeleton_json(file)) with open(basepath + '/' + vid + '.pickle', 'wb') as file: pickle.dump(self.skeletons, file) else: self.skeletons = []
Example #2
Source File: gtest_parallel.py From gtest-parallel with Apache License 2.0 | 6 votes |
def write_to_file(self, save_file): "Write all the times to file." try: with TestTimes.LockedFile(save_file, 'a+b') as fd: times = TestTimes.__read_test_times_file(fd) if times is None: times = self.__times else: times.update(self.__times) # We erase data from file while still holding a lock to it. This # way reading old test times and appending new ones are atomic # for external viewer. fd.seek(0) fd.truncate() with gzip.GzipFile(fileobj=fd, mode='wb') as gzf: cPickle.dump(times, gzf, PICKLE_HIGHEST_PROTOCOL) except IOError: pass # ignore errors---saving the times isn't that important
Example #3
Source File: quick_scraper.py From Sentiment-analysis-of-financial-news-data with MIT License | 6 votes |
def writeTo(self): company=self.dest_file for webp in self.date: data_dump_dir = os.path.join(DATA_DIR,'content',company,webp) if(not os.path.exists(data_dump_dir)): os.makedirs(data_dump_dir) temp = {'date':self.date[webp], 'title':self.titles[webp], 'content':self.contents[webp], 'url':self.total_links[webp], } with open(os.path.join(DATA_DIR,'content/'+company+'/'+webp+'/raw_'+self.file.split('.data')[0]+'_'+webp+'.pkl'), 'wb') as fp: pickle.dump(temp, fp) df = pd.DataFrame(temp) df.set_index('date',inplace=True) df.to_pickle(os.path.join(DATA_DIR,'content/'+company+'/'+webp+'/'+self.file.split('.data')[0]+'_'+webp+'_content.pkl')) df.to_csv(os.path.join(DATA_DIR,'content/'+company+'/'+webp+'/'+self.file.split('.data')[0]+'_'+webp+'_content.csv'))
Example #4
Source File: dataset.py From tensorflow_nlp with Apache License 2.0 | 6 votes |
def preprocess(self, vocab_file, corpus_file, data_path, label_file): corpus = pd.read_csv(corpus_file, encoding='utf8') labels = corpus['label'].drop_duplicates().values corpus = corpus['text'] corpus = ''.join(map(lambda i: i.strip(), corpus)) self.labels = dict(zip(labels, range(len(labels)))) self.label_size = len(labels) with open(label_file, 'wb') as f: pickle.dump(self.labels, f) counter = collections.Counter(corpus) count_pairs = sorted(counter.items(), key=lambda i: -i[1]) self.chars, _ = zip(*count_pairs) with open(vocab_file, 'wb') as f: pickle.dump(self.chars, f) self.vocab_size = len(self.chars) + 1 self.vocab = dict(zip(self.chars, range(1, len(self.chars) + 1))) data = pd.read_csv(data_path, encoding='utf8') tensor_x = np.array(list(map(self.transform, data['text']))) tensor_y = np.array(list(map(self.labels.get, data['label']))) self.tensor = np.c_[tensor_x, tensor_y].astype(int)
Example #5
Source File: model.py From code2seq with MIT License | 6 votes |
def save_model(self, sess, path): save_target = path + '_iter%d' % self.epochs_trained dirname = os.path.dirname(save_target) if not os.path.exists(dirname): os.makedirs(dirname) self.saver.save(sess, save_target) dictionaries_path = save_target + '.dict' with open(dictionaries_path, 'wb') as file: pickle.dump(self.subtoken_to_index, file) pickle.dump(self.index_to_subtoken, file) pickle.dump(self.subtoken_vocab_size, file) pickle.dump(self.target_to_index, file) pickle.dump(self.index_to_target, file) pickle.dump(self.target_vocab_size, file) pickle.dump(self.node_to_index, file) pickle.dump(self.index_to_node, file) pickle.dump(self.nodes_vocab_size, file) pickle.dump(self.num_training_examples, file) pickle.dump(self.epochs_trained, file) pickle.dump(self.config, file) print('Saved after %d epochs in: %s' % (self.epochs_trained, save_target))
Example #6
Source File: feed_forward_network.py From evostra with MIT License | 6 votes |
def save(self, filename='weights.pkl'): with open(filename, 'wb') as fp: pickle.dump(self.weights, fp)
Example #7
Source File: models.py From punctuator2 with MIT License | 6 votes |
def save(self, file_path, gsums=None, learning_rate=None, validation_ppl_history=None, best_validation_ppl=None, epoch=None, random_state=None): try: import cPickle except ImportError: import _pickle as cPickle state = { "type": self.__class__.__name__, "n_hidden": self.n_hidden, "x_vocabulary": self.x_vocabulary, "y_vocabulary": self.y_vocabulary, "stage1_model_file_name": self.stage1_model_file_name if hasattr(self, "stage1_model_file_name") else None, "params": [p.get_value(borrow=True) for p in self.params], "gsums": [s.get_value(borrow=True) for s in gsums] if gsums else None, "learning_rate": learning_rate, "validation_ppl_history": validation_ppl_history, "epoch": epoch, "random_state": random_state } with open(file_path, 'wb') as f: cPickle.dump(state, f, protocol=cPickle.HIGHEST_PROTOCOL)
Example #8
Source File: DShap.py From DataShapley with MIT License | 6 votes |
def _create_results_placeholder(self, directory, tmc_number, g_number, n_points, n_sources, model_family): tmc_dir = os.path.join( directory, 'mem_tmc_{}.pkl'.format(tmc_number.zfill(4)) ) g_dir = os.path.join( directory, 'mem_g_{}.pkl'.format(g_number.zfill(4)) ) self.mem_tmc = np.zeros((0, n_points)) self.mem_g = np.zeros((0, n_points)) self.idxs_tmc = np.zeros((0, n_sources), int) self.idxs_g = np.zeros((0, n_sources), int) pkl.dump({'mem_tmc': self.mem_tmc, 'idxs_tmc': self.idxs_tmc}, open(tmc_dir, 'wb')) if model_family not in ['logistic', 'NN']: return pkl.dump({'mem_g': self.mem_g, 'idxs_g': self.idxs_g}, open(g_dir, 'wb'))
Example #9
Source File: DShap.py From DataShapley with MIT License | 6 votes |
def save_results(self, overwrite=False): """Saves results computed so far.""" if self.directory is None: return loo_dir = os.path.join(self.directory, 'loo.pkl') if not os.path.exists(loo_dir) or overwrite: pkl.dump({'loo': self.vals_loo}, open(loo_dir, 'wb')) tmc_dir = os.path.join( self.directory, 'mem_tmc_{}.pkl'.format(self.tmc_number.zfill(4)) ) g_dir = os.path.join( self.directory, 'mem_g_{}.pkl'.format(self.g_number.zfill(4)) ) pkl.dump({'mem_tmc': self.mem_tmc, 'idxs_tmc': self.idxs_tmc}, open(tmc_dir, 'wb')) pkl.dump({'mem_g': self.mem_g, 'idxs_g': self.idxs_g}, open(g_dir, 'wb'))
Example #10
Source File: polyphonic_lstm_training.py From JamBot with MIT License | 6 votes |
def test(): print('\nTesting:') total_test_loss = 0 bar = progressbar.ProgressBar(maxval=test_set_size, redirect_stdout=False) for i, test_song in enumerate(test_set): X_test, Y_test = make_feature_vector(test_song, chord_test_set[i], chord_embed_method) loss = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=verbose) model.reset_states() total_test_loss += loss bar.update(i) total_test_loss_array.append(total_test_loss/test_set_size) print('\nTotal test loss: ', total_test_loss/test_set_size) print('-'*50) plt.plot(total_test_loss_array, 'b-') plt.plot(total_train_loss_array, 'r-') # plt.axis([0, epochs, 0, 5]) if show_plot: plt.show() if save_plot: plt.savefig(model_path+'plot.png') pickle.dump(total_test_loss_array,open(model_path+'total_test_loss_array.pickle', 'wb')) pickle.dump(total_train_loss_array,open(model_path+'total_train_loss_array.pickle', 'wb')) # Make feature vectors with the notes and the chord information
Example #11
Source File: chord_lstm_training.py From JamBot with MIT License | 6 votes |
def test(): print('\nTesting:') total_test_loss = 0 bar = progressbar.ProgressBar(maxval=test_set_size, redirect_stdout=False) for i, test_song in enumerate(test_set): X_test = test_song[:-1] Y_test = np_utils.to_categorical(test_song[1:], num_classes=num_chords) loss = model.evaluate(X_test, Y_test, batch_size=batch_size, verbose=verbose) model.reset_states() total_test_loss += loss bar.update(i+1) total_test_loss_array.append(total_test_loss/test_set_size) print('\nTotal test loss: ', total_test_loss/test_set_size) print('-'*50) plt.plot(total_test_loss_array, 'b-', label='test loss') plt.plot(total_train_loss_array, 'r-', label='train loss') # plt.legend() plt.ylabel(model_path) # plt.axis([0, 50, 3, 5]) plt.grid() if show_plot: plt.show() if save_plot: plt.savefig(model_path+'plot.png') pickle.dump(total_test_loss_array,open(model_path+'total_test_loss_array.pickle', 'wb')) pickle.dump(total_train_loss_array,open(model_path+'total_train_loss_array.pickle', 'wb'))
Example #12
Source File: DataReader.py From MachineLearningSamples-BiomedicalEntityExtraction with MIT License | 6 votes |
def save_resources(self, output_resources_pickle_file): print("saving the resources into the file {}".format(output_resources_pickle_file)) pickle_content = {} pickle_content["word_to_ix_map"] = self.word_to_ix_map pickle_content["wordvecs"] = self.wordvecs pickle_content["num_embedding_features"] = self.num_embedding_features pickle_content["num_classes"] = self.num_classes pickle_content["max_sentence_len_train"] = self.max_sentence_len_train pickle_content["tag_to_vector_map"] = self.tag_to_vector_map pickle_content["vector_to_tag_map"] = self.vector_to_tag_map pickle_content["zero_vec_pos"] = self.zero_vec_pos cPickle.dump(pickle_content, open(output_resources_pickle_file, "wb")) print("Done") ################################################## # read_and_parse_test_data ##################################################
Example #13
Source File: plot.py From Adversarial-Autoencoder with MIT License | 6 votes |
def flush(): prints = [] for name, vals in _since_last_flush.items(): prints.append("{}\t{}".format(name, np.mean(list(vals.values())))) _since_beginning[name].update(vals) x_vals = np.sort(list(_since_beginning[name].keys())) y_vals = [_since_beginning[name][x] for x in x_vals] plt.clf() plt.plot(x_vals, y_vals) plt.xlabel('iteration') plt.ylabel(name) # plt.savefig(name.replace(' ', '_')+'.jpg') print ("iter {}\t{}".format(_iter[0], "\t".join(prints))) _since_last_flush.clear() with open('log.pkl', 'wb') as f: pickle.dump(dict(_since_beginning), f, 3)
Example #14
Source File: eval_ap.py From pytorch-0.4-yolov3 with MIT License | 5 votes |
def get_recs_from_cache(imagenames, cachedir, cachename): # first load gt if not os.path.isdir(cachedir): os.mkdir(cachedir) cachefile = os.path.join(cachedir, cachename) if not os.path.isfile(cachefile): # load annots recs = {} for i, imagename in enumerate(imagenames): recs[imagename] = parse_rec(get_image_xml_name(imagename)) #if i % 100 == 0: # print ('Reading annotation for {:d}/{:d}'.format( # i + 1, len(imagenames))) # save # print ('Saving cached annotations to {:s}'.format(cachefile)) with open(cachefile, 'wb') as f: cPickle.dump(recs, f) else: # load # print ('loaded cached annotations from {:s}'.format(cachefile)) with open(cachefile, 'rb') as f: recs = cPickle.load(f) try: for imagename in imagenames: recs[imagename] except Exception as e: print("Exception: {0}".format(e)) print ('\t{:s} is corrupted. retry!!'.format(cachefile)) os.remove(cachefile) recs = get_recs_from_cache(imagenames, cachedir, cachename) return recs
Example #15
Source File: eval_ap.py From pytorch-0.4-yolov3 with MIT License | 5 votes |
def _do_python_eval(testlist, namelist, output_dir = 'output'): cachedir = os.path.join(output_dir, 'annotations_cache') aps = [] if not os.path.isdir(output_dir): os.mkdir(output_dir) global classes classes = load_class_names(namelist) for i, cls in enumerate(classes): rec, prec, ap = eval(testlist, cls, cachedir, ovthresh=0.5) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~~~~~~') print(' Results:') print('-------------') for i, ap in enumerate(aps): print('{:<10s}\t{:.3f}'.format(classes[i], ap)) print('=============') print('{:^10s}\t{:.3f}'.format('Average', np.mean(aps))) print('~~~~~~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('Recompute with `./tools/reval.py --matlab ...` for your paper.') print('-- Thanks, The Management') print('--------------------------------------------------------------')
Example #16
Source File: drawers.py From minetorch with MIT License | 5 votes |
def _update_state(self, values, graph): if graph not in self.state or not isinstance(self.state[graph], dict): self.state[graph] = {} for key in values: if key not in self.state[graph]: self.state[graph][key] = [] self.state[graph][key].append(values[key]) with open(self.data_file, 'wb') as f: pickle.dump(self.state, f)
Example #17
Source File: universal_tool_template_1000.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #18
Source File: universal_tool_template_0904.py From universal_tool_template.py with MIT License | 5 votes |
def writeFileData(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #19
Source File: universal_tool_template_0803.py From universal_tool_template.py with MIT License | 5 votes |
def writeFileData(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #20
Source File: universal_tool_template_0903.py From universal_tool_template.py with MIT License | 5 votes |
def writeFileData(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #21
Source File: universal_tool_template_1110.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #22
Source File: universal_tool_template_1112.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #23
Source File: universal_tool_template_1115.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #24
Source File: GearBox_template_1010.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #25
Source File: universal_tool_template_1020.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #26
Source File: universal_tool_template_1116.py From universal_tool_template.py with MIT License | 5 votes |
def writeDataFile(self,data,file,binary=0): with open(file, 'w') as f: if binary == 0: json.dump(data, f) else: cPickle.dump(data, f)
Example #27
Source File: regions.py From Aegean with Academic Free License v3.0 | 5 votes |
def save(self, mimfile): """ Save this region to a file Parameters ---------- mimfile : str File to write """ cPickle.dump(self, open(mimfile,'wb'), protocol=2) return
Example #28
Source File: metricscollection.py From devops with Apache License 2.0 | 5 votes |
def avi_login(self): try: login = pickle.load(open((os.path.join(fdir,self.avi_cluster_ip)),'rb')) cookies=dict() if 'avi-sessionid' in login.cookies.keys(): cookies['avi-sessionid'] = login.cookies['avi-sessionid'] else: cookies['sessionid'] = login.cookies['sessionid'] headers = ({"X-Avi-Tenant": "admin", 'content-type': 'application/json'}) resp = requests.get('https://%s/api/cluster' %self.avi_cluster_ip, verify=False, headers = headers,cookies=cookies,timeout=5) if resp.status_code == 200: return login else: login = requests.post('https://%s/login' %self.avi_cluster_ip, verify=False, data={'username': self.avi_user, 'password': self.avi_pass},timeout=15) pickle.dump(login, open((os.path.join(fdir,self.avi_cluster_ip)),'wb')) return login except: try: login = requests.post('https://%s/login' %self.avi_cluster_ip, verify=False, data={'username': self.avi_user, 'password': self.avi_pass},timeout=15) pickle.dump(login, open((os.path.join(fdir,self.avi_cluster_ip)),'wb')) return login except requests.exceptions.Timeout: class timedout:pass login = timedout() login.status_code = 'timedout' return login
Example #29
Source File: train_model.py From aerial_mtl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _save_plot_data(self, plot_data, filename): # save pickle.dump(plot_data, open(filename, 'wb'))
Example #30
Source File: data_processing.py From JamBot with MIT License | 5 votes |
def make_chord_dict(chords_folder, num_chords): cntr = count_chords(chords_folder, num_chords) chord_to_index = dict() chord_to_index[UNK] = 0 for chord, _ in cntr: chord_to_index[chord] = len(chord_to_index) index_to_chord = {v: k for k, v in chord_to_index.items()} pickle.dump(chord_to_index,open(dict_path + chord_dict_name , 'wb')) pickle.dump(index_to_chord,open(dict_path + index_dict_name , 'wb')) return chord_to_index, index_to_chord