Python keras.wrappers.scikit_learn.KerasClassifier() Examples
The following are 30
code examples of keras.wrappers.scikit_learn.KerasClassifier().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.wrappers.scikit_learn
, or try the search function
.
Example #1
Source File: keras_integration.py From modAL with MIT License | 7 votes |
def create_keras_model(): """ This function compiles and returns a Keras model. Should be passed to KerasClassifier in the Keras scikit-learn API. """ model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta', metrics=['accuracy']) return model # create the classifier
Example #2
Source File: data_management.py From deploying-machine-learning-models with BSD 3-Clause "New" or "Revised" License | 7 votes |
def load_pipeline_keras() -> Pipeline: """Load a Keras Pipeline from disk.""" dataset = joblib.load(config.PIPELINE_PATH) build_model = lambda: load_model(config.MODEL_PATH) classifier = KerasClassifier(build_fn=build_model, batch_size=config.BATCH_SIZE, validation_split=10, epochs=config.EPOCHS, verbose=2, callbacks=m.callbacks_list, # image_size = config.IMAGE_SIZE ) classifier.classes_ = joblib.load(config.CLASSES_PATH) classifier.model = build_model() return Pipeline([ ('dataset', dataset), ('cnn_model', classifier) ])
Example #3
Source File: mnist_example.py From hyperparameter_hunter with MIT License | 6 votes |
def execute(): train_df, holdout_df = prep_data() env = Environment( train_dataset=train_df, results_path="HyperparameterHunterAssets", metrics=["roc_auc_score"], target_column=[f"target_{_}" for _ in range(10)], # 10 classes (one-hot-encoded output) holdout_dataset=holdout_df, cv_type="StratifiedKFold", cv_params=dict(n_splits=3, shuffle=True, random_state=True), ) exp = CVExperiment(KerasClassifier, build_fn_exp, dict(batch_size=64, epochs=10, verbose=1)) opt = BayesianOptPro(iterations=10, random_state=32) opt.forge_experiment(KerasClassifier, build_fn_opt, dict(batch_size=64, epochs=10, verbose=0)) opt.go()
Example #4
Source File: mnist_random_search.py From Deep-Learning-Quick-Reference with MIT License | 5 votes |
def main(): data = load_mnist() model = KerasClassifier(build_fn=build_network, verbose=0) hyperparameters = create_hyperparameters() search = RandomizedSearchCV(estimator=model, param_distributions=hyperparameters, n_iter=10, n_jobs=1, cv=3, verbose=1) search.fit(data["train_X"], data["train_y"]) print(search.best_params_)
Example #5
Source File: keras.py From scikit-multilearn with BSD 2-Clause "Simplified" License | 5 votes |
def fit(self, X, y): if self.multi_class: self.n_classes_ = len(set(y)) else: self.n_classes_ = 1 build_callable = lambda: self.build_function(X.shape[1], self.n_classes_) keras_params=copy(self.keras_params) keras_params['build_fn']=build_callable self.classifier_ = KerasClassifier(**keras_params) self.classifier_.fit(X, y)
Example #6
Source File: test_keras.py From hyperparameter_hunter with MIT License | 5 votes |
def run_initialization_matching_optimization_0(build_fn): optimizer = DummyOptPro(iterations=1) optimizer.forge_experiment( model_initializer=KerasClassifier, model_init_params=dict(build_fn=build_fn), model_extra_params=dict(epochs=1, batch_size=128, verbose=0), ) optimizer.go() return optimizer #################### `glorot_normal` (`VarianceScaling`) ####################
Example #7
Source File: optimization_example.py From hyperparameter_hunter with MIT License | 5 votes |
def _execute(): #################### Environment #################### env = Environment( train_dataset=get_breast_cancer_data(target="target"), results_path="HyperparameterHunterAssets", metrics=["roc_auc_score"], cv_type="StratifiedKFold", cv_params=dict(n_splits=5, shuffle=True, random_state=32), ) #################### Experimentation #################### experiment = CVExperiment( model_initializer=KerasClassifier, model_init_params=dict(build_fn=_build_fn_experiment), model_extra_params=dict( callbacks=[ReduceLROnPlateau(patience=5)], batch_size=32, epochs=10, verbose=0 ), ) #################### Optimization #################### optimizer = BayesianOptPro(iterations=10) optimizer.forge_experiment( model_initializer=KerasClassifier, model_init_params=dict(build_fn=_build_fn_optimization), model_extra_params=dict( callbacks=[ReduceLROnPlateau(patience=Integer(5, 10))], batch_size=Categorical([32, 64], transform="onehot"), epochs=10, verbose=0, ), ) optimizer.go()
Example #8
Source File: image_classification_example.py From hyperparameter_hunter with MIT License | 5 votes |
def _execute(): env = Environment( train_dataset=prep_data(), results_path="HyperparameterHunterAssets", metrics=["roc_auc_score"], cv_type="StratifiedKFold", cv_params=dict(n_splits=3, shuffle=True, random_state=True), ) experiment = CVExperiment( model_initializer=KerasClassifier, model_init_params=build_fn, model_extra_params=dict(batch_size=32, epochs=3, verbose=0, shuffle=True), )
Example #9
Source File: experiment_example.py From hyperparameter_hunter with MIT License | 5 votes |
def execute(): env = Environment( train_dataset=get_breast_cancer_data(), results_path="HyperparameterHunterAssets", target_column="diagnosis", metrics=["roc_auc_score"], cv_type="StratifiedKFold", cv_params=dict(n_splits=5, shuffle=True, random_state=32), ) experiment = CVExperiment( model_initializer=KerasClassifier, model_init_params=build_fn, model_extra_params=dict( callbacks=[ ModelCheckpoint( filepath=os.path.abspath("foo_checkpoint"), save_best_only=True, verbose=1 ), ReduceLROnPlateau(patience=5), ], batch_size=32, epochs=10, verbose=0, shuffle=True, ), )
Example #10
Source File: multi_classification_example.py From hyperparameter_hunter with MIT License | 5 votes |
def _execute(): env = Environment( train_dataset=prep_data(), results_path="HyperparameterHunterAssets", metrics=["roc_auc_score"], target_column=[f"target_{_}" for _ in range(10)], cv_type="StratifiedKFold", cv_params=dict(n_splits=10, shuffle=True, random_state=True), ) experiment = CVExperiment( model_initializer=KerasClassifier, model_init_params=build_fn, model_extra_params=dict(batch_size=32, epochs=10, verbose=0, shuffle=True), )
Example #11
Source File: model.py From palladium with Apache License 2.0 | 5 votes |
def make_pipeline(**kw): # In the case of this Iris dataset, our targets are string labels, # and KerasClassifier doesn't like that. So we transform the # targets into a one-hot encoding instead using PipeLineY. return PipelineY([ ('clf', KerasClassifier(build_fn=keras_model, **kw)), ], y_transformer=LabelBinarizer(), predict_use_inverse=False, )
Example #12
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #13
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #14
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_inherit_class_build_fn(): class InheritClassBuildFnClf(KerasClassifier): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = InheritClassBuildFnClf( build_fn=None, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #15
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #16
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #17
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #18
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #19
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_inherit_class_build_fn(): class InheritClassBuildFnClf(KerasClassifier): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = InheritClassBuildFnClf( build_fn=None, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #20
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #21
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #22
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #23
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #24
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_inherit_class_build_fn(): class InheritClassBuildFnClf(KerasClassifier): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = InheritClassBuildFnClf( build_fn=None, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #25
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #26
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #27
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #28
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_build_fn(): clf = KerasClassifier( build_fn=build_fn_clf, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #29
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_inherit_class_build_fn(): class InheritClassBuildFnClf(KerasClassifier): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = InheritClassBuildFnClf( build_fn=None, hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)
Example #30
Source File: scikit_learn_test.py From DeepLearning_Wavelet-LSTM with MIT License | 5 votes |
def test_classify_class_build_fn(): class ClassBuildFnClf(object): def __call__(self, hidden_dims): return build_fn_clf(hidden_dims) clf = KerasClassifier( build_fn=ClassBuildFnClf(), hidden_dims=hidden_dims, batch_size=batch_size, epochs=epochs) assert_classification_works(clf) assert_string_classification_works(clf)