Python tflearn.layers.core.fully_connected() Examples
The following are 30
code examples of tflearn.layers.core.fully_connected().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tflearn.layers.core
, or try the search function
.
Example #1
Source File: models.py From pygta5 with GNU General Public License v3.0 | 8 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #2
Source File: SuironML.py From suiron with MIT License | 6 votes |
def get_nn_model(checkpoint_path='nn_motor_model', session=None): # Input is a single value (raw motor value) network = input_data(shape=[None, 1], name='input') # Hidden layer no.1, network = fully_connected(network, 12, activation='linear') # Output layer network = fully_connected(network, 1, activation='tanh') # regression network = regression(network, loss='mean_square', metric='accuracy', name='target') # Verbosity yay nay model = tflearn.DNN(network, tensorboard_verbose=3, checkpoint_path=checkpoint_path, session=session) return model
Example #3
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #4
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #5
Source File: em_model.py From Emotion-recognition-and-prediction with Apache License 2.0 | 6 votes |
def build_network(self): print("---> Starting Neural Network") self.network = input_data(shape = [None, 48, 48, 1]) self.network = conv_2d(self.network, 64, 5, activation = 'relu') self.network = max_pool_2d(self.network, 3, strides = 2) self.network = conv_2d(self.network, 64, 5, activation = 'relu') self.network = max_pool_2d(self.network, 3, strides = 2) self.network = conv_2d(self.network, 128, 4, activation = 'relu') self.network = dropout(self.network, 0.3) self.network = fully_connected(self.network, 3072, activation = 'relu') self.network = fully_connected(self.network, len(self.target_classes), activation = 'softmax') self.network = regression(self.network, optimizer = 'momentum', loss = 'categorical_crossentropy') self.model = tflearn.DNN( self.network, checkpoint_path = 'model_1_nimish', max_checkpoints = 1, tensorboard_verbose = 2 ) self.load_model()
Example #6
Source File: models.py From pygta5 with GNU General Public License v3.0 | 6 votes |
def resnext(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): net = input_data(shape=[None, width, height, 3], name='input') net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001) net = tflearn.layers.conv.resnext_block(net, n, 16, 32) net = tflearn.resnext_block(net, 1, 32, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 32, 32) net = tflearn.resnext_block(net, 1, 64, 32, downsample=True) net = tflearn.resnext_block(net, n-1, 64, 32) net = tflearn.batch_normalization(net) net = tflearn.activation(net, 'relu') net = tflearn.global_avg_pool(net) # Regression net = tflearn.fully_connected(net, output, activation='softmax') opt = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True) net = tflearn.regression(net, optimizer=opt, loss='categorical_crossentropy') model = tflearn.DNN(net, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #7
Source File: alexnet.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet(width, height, lr): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 3, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #8
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) network = conv_3d(network, 256, 5, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #9
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_v0(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 256, 3, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #10
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #11
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_color_2d(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): network = input_data(shape=[None, width, height, 3], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #12
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_LSTM_gray(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height], name='input') #network = tflearn.input_data(shape=[None, 28, 28], name='input') network = tflearn.lstm(network, 128, return_seq=True) network = tflearn.lstm(network, 128) network = tflearn.fully_connected(network, 9, activation='softmax') network = tflearn.regression(network, optimizer='adam', loss='categorical_crossentropy', name="output1") model = tflearn.DNN(network, checkpoint_path='model_lstm', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #13
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_frames(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height,frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #14
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet2(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 3, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #15
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) network = conv_3d(network, 256, 5, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = avg_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #16
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet2(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #17
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_v0(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 256, 3, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #18
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet2(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 384, 3, activation='relu') network = conv_3d(network, 256, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 3, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #19
Source File: alexnet.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet(width, height, lr): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 3, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log') return model
Example #20
Source File: encoders_decoders.py From 3d-lmnet with MIT License | 5 votes |
def image_encoder(img_inp, FLAGS): ''' Input: img_inp: tf placeholder of shape (B, HEIGHT, WIDTH, 3) corresponding to RGB image Returns: x_latent: tensor of shape (B, FLAGS.bottleneck) corresponding to the predicted latent vector Description: Main Architecture for Latent Matching Network ''' x=img_inp #128 128 x=tflearn.layers.conv.conv_2d(x,32,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,32,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,64,(3,3),strides=2,activation='relu',weight_decay=1e-5,regularizer='L2') #64 64 x=tflearn.layers.conv.conv_2d(x,64,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,64,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,128,(3,3),strides=2,activation='relu',weight_decay=1e-5,regularizer='L2') #32 32 x=tflearn.layers.conv.conv_2d(x,128,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,128,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,256,(3,3),strides=2,activation='relu',weight_decay=1e-5,regularizer='L2') #16 16 x=tflearn.layers.conv.conv_2d(x,256,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,256,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,512,(3,3),strides=2,activation='relu',weight_decay=1e-5,regularizer='L2') #8 8 x=tflearn.layers.conv.conv_2d(x,512,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,512,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,512,(3,3),strides=1,activation='relu',weight_decay=1e-5,regularizer='L2') x=tflearn.layers.conv.conv_2d(x,512,(5,5),strides=2,activation='relu',weight_decay=1e-5,regularizer='L2') if FLAGS.mode == 'lm': x_latent=tflearn.layers.core.fully_connected(x,FLAGS.bottleneck,activation='linear',weight_decay=1e-3,regularizer='L2') return x_latent elif FLAGS.mode == 'plm': z_mean = tflearn.layers.core.fully_connected(x, FLAGS.bottleneck, activation='linear', weight_decay=1e-3,regularizer='L2') z_log_sigma_sq = tflearn.layers.core.fully_connected(x, FLAGS.bottleneck, activation='linear', weight_decay=1e-3,regularizer='L2') return z_mean, z_log_sigma_sq
Example #21
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def make_core_network(network): network = tflearn.reshape(network, [-1, 28, 28, 1], name="reshape") network = conv_2d(network, 32, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = conv_2d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = fully_connected(network, 128, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 10, activation='softmax') return network
Example #22
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def make_core_network(network): dense1 = tflearn.fully_connected(network, 64, activation='tanh', regularizer='L2', weight_decay=0.001, name="dense1") dropout1 = tflearn.dropout(dense1, 0.8) dense2 = tflearn.fully_connected(dropout1, 64, activation='tanh', regularizer='L2', weight_decay=0.001, name="dense2") dropout2 = tflearn.dropout(dense2, 0.8) softmax = tflearn.fully_connected(dropout2, 10, activation='softmax', name="softmax") return softmax
Example #23
Source File: weights_loading_scope.py From FRU with MIT License | 5 votes |
def __init__(self): inputs = tflearn.input_data(shape=[None, 784], name="input") with tf.variable_scope("scope1") as scope: net_conv = Model1.make_core_network(inputs) # shape (?, 10) with tf.variable_scope("scope2") as scope: net_dnn = Model2.make_core_network(inputs) # shape (?, 10) network = tf.concat([net_conv, net_dnn], 1, name="concat") # shape (?, 20) network = tflearn.fully_connected(network, 10, activation="softmax") network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') self.model = tflearn.DNN(network, tensorboard_verbose=0)
Example #24
Source File: test_validation_monitors.py From FRU with MIT License | 5 votes |
def test_vbs1(self): with tf.Graph().as_default(): # Data loading and preprocessing import tflearn.datasets.mnist as mnist X, Y, testX, testY = mnist.load_data(one_hot=True) X = X.reshape([-1, 28, 28, 1]) testX = testX.reshape([-1, 28, 28, 1]) X = X[:20, :, :, :] Y = Y[:20, :] testX = testX[:10, :, :, :] testY = testY[:10, :] # Building convolutional network network = input_data(shape=[None, 28, 28, 1], name='input') network = conv_2d(network, 32, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = conv_2d(network, 64, 3, activation='relu', regularizer="L2") network = max_pool_2d(network, 2) network = local_response_normalization(network) network = fully_connected(network, 128, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 256, activation='tanh') network = dropout(network, 0.8) network = fully_connected(network, 10, activation='softmax') network = regression(network, optimizer='adam', learning_rate=0.01, loss='categorical_crossentropy', name='target') # Training model = tflearn.DNN(network, tensorboard_verbose=3) model.fit({'input': X}, {'target': Y}, n_epoch=1, batch_size=10, validation_set=({'input': testX}, {'target': testY}), validation_batch_size=5, snapshot_step=10, show_metric=True, run_id='convnet_mnist_vbs') self.assertEqual(model.train_ops[0].validation_batch_size, 5) self.assertEqual(model.train_ops[0].batch_size, 10)
Example #25
Source File: emotion_recognition.py From emotion-recognition-neural-networks with MIT License | 5 votes |
def build_network(self): # Smaller 'AlexNet' # https://github.com/tflearn/tflearn/blob/master/examples/images/alexnet.py print('[+] Building CNN') self.network = input_data(shape=[None, SIZE_FACE, SIZE_FACE, 1]) self.network = conv_2d(self.network, 64, 5, activation='relu') #self.network = local_response_normalization(self.network) self.network = max_pool_2d(self.network, 3, strides=2) self.network = conv_2d(self.network, 64, 5, activation='relu') self.network = max_pool_2d(self.network, 3, strides=2) self.network = conv_2d(self.network, 128, 4, activation='relu') self.network = dropout(self.network, 0.3) self.network = fully_connected(self.network, 3072, activation='relu') self.network = fully_connected( self.network, len(EMOTIONS), activation='softmax') self.network = regression( self.network, optimizer='momentum', loss='categorical_crossentropy' ) self.model = tflearn.DNN( self.network, checkpoint_path=SAVE_DIRECTORY + '/emotion_recognition', max_checkpoints=1, tensorboard_verbose=2 ) self.load_model()
Example #26
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_v0(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height, frame_count, 1], name='input') network = conv_3d(network, 96, 11, strides=4, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 256, 5, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 384, 3, 3, activation='relu') network = conv_3d(network, 256, 3, 3, activation='relu') network = max_pool_3d(network, 3, strides=2) #network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #27
Source File: alexnet.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log') return model
Example #28
Source File: alexnet.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def alexnet2(width, height, lr, output=3): network = input_data(shape=[None, width, height, 1], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, checkpoint_path='model_alexnet', max_checkpoints=1, tensorboard_verbose=2, tensorboard_dir='log') return model
Example #29
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_color_2d(width, height, frame_count, lr, output=9, model_name = 'sentnet_color.model'): network = input_data(shape=[None, width, height, 3], name='input') network = conv_2d(network, 96, 11, strides=4, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = conv_2d(network, 256, 5, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 384, 3, activation='relu') network = conv_2d(network, 256, 3, activation='relu') network = max_pool_2d(network, 3, strides=2) network = local_response_normalization(network) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, 4096, activation='tanh') network = dropout(network, 0.5) network = fully_connected(network, output, activation='softmax') network = regression(network, optimizer='momentum', loss='categorical_crossentropy', learning_rate=lr, name='targets') model = tflearn.DNN(network, max_checkpoints=0, tensorboard_verbose=0, tensorboard_dir='log') return model
Example #30
Source File: models.py From pygta5 with GNU General Public License v3.0 | 5 votes |
def sentnet_LSTM_gray(width, height, frame_count, lr, output=9): network = input_data(shape=[None, width, height], name='input') #network = tflearn.input_data(shape=[None, 28, 28], name='input') network = tflearn.lstm(network, 128, return_seq=True) network = tflearn.lstm(network, 128) network = tflearn.fully_connected(network, 9, activation='softmax') network = tflearn.regression(network, optimizer='adam', loss='categorical_crossentropy', name="output1") model = tflearn.DNN(network, checkpoint_path='model_lstm', max_checkpoints=1, tensorboard_verbose=0, tensorboard_dir='log') return model