Python scipy.fftpack() Examples
The following are 20
code examples of scipy.fftpack().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
scipy
, or try the search function
.
Example #1
Source File: thinkdsp.py From Lie_to_me with MIT License | 5 votes |
def make_dct(self): """Computes the DCT of this wave. """ N = len(self.ys) hs = scipy.fftpack.dct(self.ys, type=2) fs = (0.5 + np.arange(N)) / 2 return Dct(hs, fs, self.framerate)
Example #2
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def optimized_correlate1(fft1_smoothed_abs,fft2,maxlag,dt,Nfft,nwin,method="cross-correlation"): ''' Optimized version of the correlation functions: put the smoothed source spectrum amplitude out of the inner for loop. It also takes advantage of the linear relationship of ifft, so that stacking in spectrum first to reduce the total number of times for ifft, which is the most time consuming steps in the previous correlate function ''' #------convert all 2D arrays into 1D to speed up-------- corr = np.zeros(nwin*(Nfft//2),dtype=np.complex64) corr = fft1_smoothed_abs.reshape(fft1_smoothed_abs.size,) * fft2.reshape(fft2.size,) if method == "coherence": temp = moving_ave(np.abs(fft2.reshape(fft2.size,)),10) try: corr /= temp except ValueError: raise ValueError('smoothed spectrum has zero values') corr = corr.reshape(nwin,Nfft//2) ncorr = np.zeros(shape=Nfft,dtype=np.complex64) ncorr[:Nfft//2] = np.mean(corr,axis=0) ncorr[-(Nfft//2)+1:]=np.flip(np.conj(ncorr[1:(Nfft//2)]),axis=0) ncorr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(ncorr, Nfft, axis=0))) tcorr = np.arange(-Nfft//2 + 1, Nfft//2)*dt ind = np.where(np.abs(tcorr) <= maxlag)[0] ncorr = ncorr[ind] return ncorr
Example #3
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def C3_process(S1_data,S2_data,Nfft,win): ''' performs all C3 processes including 1) cutting the time window for P-N parts; 2) doing FFT for the two time-seris; 3) performing cross-correlations in freq; 4) ifft to time domain ''' #-----initialize the spectrum variables---- ccp1 = np.zeros(Nfft,dtype=np.complex64) ccn1 = ccp1 ccp2 = ccp1 ccn2 = ccp1 ccp = ccp1 ccn = ccp1 #------find the time window for sta1------ S1_data_N = S1_data[win[0]:win[1]] S1_data_N = S1_data_N[::-1] S1_data_P = S1_data[win[2]:win[3]] S2_data_N = S2_data[win[0]:win[1]] S2_data_N = S2_data_N[::-1] S2_data_P = S2_data[win[2]:win[3]] #---------------do FFT------------- ccp1 = scipy.fftpack.fft(S1_data_P, Nfft) ccn1 = scipy.fftpack.fft(S1_data_N, Nfft) ccp2 = scipy.fftpack.fft(S2_data_P, Nfft) ccn2 = scipy.fftpack.fft(S2_data_N, Nfft) #------cross correlations-------- ccp = np.conj(ccp1)*ccp2 ccn = np.conj(ccn1)*ccn2 return ccp,ccn
Example #4
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def check_and_phase_shift(trace): # print trace taper_length = 20.0 # if trace.stats.npts < 4 * taper_length*trace.stats.sampling_rate: # trace.data = np.zeros(trace.stats.npts) # return trace dt = np.mod(trace.stats.starttime.datetime.microsecond*1.0e-6, trace.stats.delta) if (trace.stats.delta - dt) <= np.finfo(float).eps: dt = 0 if dt != 0: if dt <= (trace.stats.delta / 2.): dt = -dt # direction = "left" else: dt = (trace.stats.delta - dt) # direction = "right" trace.detrend(type="demean") trace.detrend(type="simple") taper_1s = taper_length * float(trace.stats.sampling_rate) / trace.stats.npts trace.taper(taper_1s) n = int(2**nextpow2(len(trace.data))) FFTdata = scipy.fftpack.fft(trace.data, n=n) fftfreq = scipy.fftpack.fftfreq(n, d=trace.stats.delta) FFTdata = FFTdata * np.exp(1j * 2. * np.pi * fftfreq * dt) trace.data = np.real(scipy.fftpack.ifft(FFTdata, n=n)[:len(trace.data)]) trace.stats.starttime += dt return trace else: return trace
Example #5
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def C3_process(S1_data,S2_data,Nfft,win): ''' performs all C3 processes including 1) cutting the time window for P-N parts; 2) doing FFT for the two time-seris; 3) performing cross-correlations in freq; 4) ifft to time domain ''' #-----initialize the spectrum variables---- ccp1 = np.zeros(Nfft,dtype=np.complex64) ccn1 = ccp1 ccp2 = ccp1 ccn2 = ccp1 ccp = ccp1 ccn = ccp1 #------find the time window for sta1------ S1_data_N = S1_data[win[0]:win[1]] S1_data_N = S1_data_N[::-1] S1_data_P = S1_data[win[2]:win[3]] S2_data_N = S2_data[win[0]:win[1]] S2_data_N = S2_data_N[::-1] S2_data_P = S2_data[win[2]:win[3]] #---------------do FFT------------- ccp1 = scipy.fftpack.fft(S1_data_P, Nfft) ccn1 = scipy.fftpack.fft(S1_data_N, Nfft) ccp2 = scipy.fftpack.fft(S2_data_P, Nfft) ccn2 = scipy.fftpack.fft(S2_data_N, Nfft) #------cross correlations-------- ccp = np.conj(ccp1)*ccp2 ccn = np.conj(ccn1)*ccn2 return ccp,ccn
Example #6
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def check_and_phase_shift(trace): # print trace taper_length = 20.0 # if trace.stats.npts < 4 * taper_length*trace.stats.sampling_rate: # trace.data = np.zeros(trace.stats.npts) # return trace dt = np.mod(trace.stats.starttime.datetime.microsecond*1.0e-6, trace.stats.delta) if (trace.stats.delta - dt) <= np.finfo(float).eps: dt = 0 if dt != 0: if dt <= (trace.stats.delta / 2.): dt = -dt # direction = "left" else: dt = (trace.stats.delta - dt) # direction = "right" trace.detrend(type="demean") trace.detrend(type="simple") taper_1s = taper_length * float(trace.stats.sampling_rate) / trace.stats.npts trace.taper(taper_1s) n = int(2**nextpow2(len(trace.data))) FFTdata = scipy.fftpack.fft(trace.data, n=n) fftfreq = scipy.fftpack.fftfreq(n, d=trace.stats.delta) FFTdata = FFTdata * np.exp(1j * 2. * np.pi * fftfreq * dt) trace.data = np.real(scipy.fftpack.ifft(FFTdata, n=n)[:len(trace.data)]) trace.stats.starttime += dt return trace else: return trace
Example #7
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def optimized_correlate1(fft1_smoothed_abs,fft2,maxlag,dt,Nfft,nwin,method="cross-correlation"): ''' Optimized version of the correlation functions: put the smoothed source spectrum amplitude out of the inner for loop. It also takes advantage of the linear relationship of ifft, so that stacking in spectrum first to reduce the total number of times for ifft, which is the most time consuming steps in the previous correlate function ''' #------convert all 2D arrays into 1D to speed up-------- corr = np.zeros(nwin*(Nfft//2),dtype=np.complex64) corr = fft1_smoothed_abs.reshape(fft1_smoothed_abs.size,) * fft2.reshape(fft2.size,) if method == "coherence": temp = moving_ave(np.abs(fft2.reshape(fft2.size,)),10) corr /= temp corr = corr.reshape(nwin,Nfft//2) ncorr = np.zeros(shape=Nfft,dtype=np.complex64) ncorr[:Nfft//2] = np.mean(corr,axis=0) ncorr[-(Nfft//2)+1:]=np.flip(np.conj(ncorr[1:(Nfft//2)]),axis=0) ncorr[0]=complex(0,0) ncorr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(ncorr, Nfft, axis=0))) tcorr = np.arange(-Nfft//2 + 1, Nfft//2)*dt ind = np.where(np.abs(tcorr) <= maxlag)[0] ncorr = ncorr[ind] return ncorr
Example #8
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def noise_processing(fft_para,dataS): ''' this function performs time domain and frequency domain normalization if needed. in real case, we prefer use include the normalization in the cross-correaltion steps by selecting coherency or decon (Prieto et al, 2008, 2009; Denolle et al, 2013) PARMAETERS: ------------------------ fft_para: dictionary containing all useful variables used for fft and cc dataS: 2D matrix of all segmented noise data # OUTPUT VARIABLES: source_white: 2D matrix of data spectra ''' # load parameters first time_norm = fft_para['time_norm'] freq_norm = fft_para['freq_norm'] smooth_N = fft_para['smooth_N'] N = dataS.shape[0] #------to normalize in time or not------ if time_norm != 'no': if time_norm == 'one_bit': # sign normalization white = np.sign(dataS) elif time_norm == 'rma': # running mean: normalization over smoothed absolute average white = np.zeros(shape=dataS.shape,dtype=dataS.dtype) for kkk in range(N): white[kkk,:] = dataS[kkk,:]/moving_ave(np.abs(dataS[kkk,:]),smooth_N) else: # don't normalize white = dataS #-----to whiten or not------ if freq_norm != 'no': source_white = whiten(white,fft_para) # whiten and return FFT else: Nfft = int(next_fast_len(int(dataS.shape[1]))) source_white = scipy.fftpack.fft(white, Nfft, axis=1) # return FFT return source_white
Example #9
Source File: noise_module.py From NoisePy with MIT License | 5 votes |
def noise_processing(fft_para,dataS): ''' this function performs time domain and frequency domain normalization if needed. in real case, we prefer use include the normalization in the cross-correaltion steps by selecting coherency or decon (Prieto et al, 2008, 2009; Denolle et al, 2013) PARMAETERS: ------------------------ fft_para: dictionary containing all useful variables used for fft and cc dataS: 2D matrix of all segmented noise data # OUTPUT VARIABLES: source_white: 2D matrix of data spectra ''' # load parameters first time_norm = fft_para['time_norm'] freq_norm = fft_para['freq_norm'] smooth_N = fft_para['smooth_N'] N = dataS.shape[0] #------to normalize in time or not------ if time_norm != 'no': if time_norm == 'one_bit': # sign normalization white = np.sign(dataS) elif time_norm == 'rma': # running mean: normalization over smoothed absolute average white = np.zeros(shape=dataS.shape,dtype=dataS.dtype) for kkk in range(N): white[kkk,:] = dataS[kkk,:]/moving_ave(np.abs(dataS[kkk,:]),smooth_N) else: # don't normalize white = dataS #-----to whiten or not------ if freq_norm != 'no': source_white = whiten(white,fft_para) # whiten and return FFT else: Nfft = int(next_fast_len(int(dataS.shape[1]))) source_white = scipy.fftpack.fft(white, Nfft, axis=1) # return FFT return source_white
Example #10
Source File: poisson_reconstruct.py From SynthText with Apache License 2.0 | 5 votes |
def IDST(X): """ Inverse DST. Python -> Matlab """ n = X.shape[0] x = np.real(scipy.fftpack.idst(X,type=1,axis=0)) return x/(n+1.0)
Example #11
Source File: poisson_reconstruct.py From SynthText with Apache License 2.0 | 5 votes |
def DST(x): """ Converts Scipy's DST output to Matlab's DST (scaling). """ X = scipy.fftpack.dst(x,type=1,axis=0) return X/2.0
Example #12
Source File: test_import.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def test_fftpack_import(self): base = Path(scipy.__file__).parent regexp = r"\s*from.+\.fftpack import .*\n" for path in base.rglob("*.py"): if base / "fftpack" in path.parents: continue # use tokenize to auto-detect encoding on systems where no # default encoding is defined (e.g. LANG='C') with tokenize.open(str(path)) as file: assert_(all(not re.fullmatch(regexp, line) for line in file), "{0} contains an import from fftpack".format(path))
Example #13
Source File: thinkdsp.py From Lie_to_me with MIT License | 5 votes |
def make_wave(self): """Transforms to the time domain. returns: Wave """ N = len(self.hs) ys = scipy.fftpack.idct(self.hs, type=2) / 2 / N #NOTE: whatever the start time was, we lose it when # we transform back #ts = self.start + np.arange(len(ys)) / self.framerate return Wave(ys, framerate=self.framerate)
Example #14
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def adaptive_filter(arr,g): ''' the adaptive covariance filter to enhance coherent signals. Fellows the method of Nakata et al., 2015 (Appendix B) the filtered signal [x1] is given by x1 = ifft(P*x1(w)) where x1 is the ffted spectra and P is the filter. P is constructed by using the temporal covariance matrix. PARAMETERS: ---------------------- arr: numpy.ndarray contains the 2D traces of daily/hourly cross-correlation functions g: a positive number to adjust the filter harshness RETURNS: ---------------------- narr: numpy vector contains the stacked cross correlation function ''' if arr.ndim == 1: return arr N,M = arr.shape Nfft = next_fast_len(M) # fft the 2D array spec = scipy.fftpack.fft(arr,axis=1,n=Nfft)[:,:M] # make cross-spectrm matrix cspec = np.zeros(shape=(N*N,M),dtype=np.complex64) for ii in range(N): for jj in range(N): kk = ii*N+jj cspec[kk] = spec[ii]*np.conjugate(spec[jj]) S1 = np.zeros(M,dtype=np.complex64) S2 = np.zeros(M,dtype=np.complex64) # construct the filter P for ii in range(N): mm = ii*N+ii S2 += cspec[mm] for jj in range(N): kk = ii*N+jj S1 += cspec[kk] p = np.power((S1-S2)/(S2*(N-1)),g) # make ifft narr = np.real(scipy.fftpack.ifft(np.multiply(p,spec),Nfft,axis=1)[:,:M]) return np.mean(narr,axis=0)
Example #15
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def adaptive_filter(arr,g): ''' the adaptive covariance filter to enhance coherent signals. Fellows the method of Nakata et al., 2015 (Appendix B) the filtered signal [x1] is given by x1 = ifft(P*x1(w)) where x1 is the ffted spectra and P is the filter. P is constructed by using the temporal covariance matrix. PARAMETERS: ---------------------- arr: numpy.ndarray contains the 2D traces of daily/hourly cross-correlation functions g: a positive number to adjust the filter harshness RETURNS: ---------------------- narr: numpy vector contains the stacked cross correlation function ''' if arr.ndim == 1: return arr N,M = arr.shape Nfft = next_fast_len(M) # fft the 2D array spec = scipy.fftpack.fft(arr,axis=1,n=Nfft)[:,:M] # make cross-spectrm matrix cspec = np.zeros(shape=(N*N,M),dtype=np.complex64) for ii in range(N): for jj in range(N): kk = ii*N+jj cspec[kk] = spec[ii]*np.conjugate(spec[jj]) S1 = np.zeros(M,dtype=np.complex64) S2 = np.zeros(M,dtype=np.complex64) # construct the filter P for ii in range(N): mm = ii*N+ii S2 += cspec[mm] for jj in range(N): kk = ii*N+jj S1 += cspec[kk] p = np.power((S1-S2)/(S2*(N-1)),g) # make ifft narr = np.real(scipy.fftpack.ifft(np.multiply(p,spec),Nfft,axis=1)[:,:M]) return np.mean(narr,axis=0)
Example #16
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def adaptive_filter(arr,g): ''' the adaptive covariance filter to enhance coherent signals. Fellows the method of Nakata et al., 2015 (Appendix B) the filtered signal [x1] is given by x1 = ifft(P*x1(w)) where x1 is the ffted spectra and P is the filter. P is constructed by using the temporal covariance matrix. PARAMETERS: ---------------------- arr: numpy.ndarray contains the 2D traces of daily/hourly cross-correlation functions g: a positive number to adjust the filter harshness RETURNS: ---------------------- narr: numpy vector contains the stacked cross correlation function ''' if arr.ndim == 1: return arr N,M = arr.shape Nfft = next_fast_len(M) # fft the 2D array spec = scipy.fftpack.fft(arr,axis=1,n=Nfft)[:,:M] # make cross-spectrm matrix cspec = np.zeros(shape=(N*N,M),dtype=np.complex64) for ii in range(N): for jj in range(N): kk = ii*N+jj cspec[kk] = spec[ii]*np.conjugate(spec[jj]) S1 = np.zeros(M,dtype=np.complex64) S2 = np.zeros(M,dtype=np.complex64) # construct the filter P for ii in range(N): mm = ii*N+ii S2 += cspec[mm] for jj in range(N): kk = ii*N+jj S1 += cspec[kk] p = np.power((S1-S2)/(S2*(N-1)),g) # make ifft narr = np.real(scipy.fftpack.ifft(np.multiply(p,spec),Nfft,axis=1)[:,:M]) return np.mean(narr,axis=0)
Example #17
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def correlate(fft1,fft2, maxlag,dt, Nfft, method="cross-correlation"): """This function takes ndimensional *data* array, computes the cross-correlation in the frequency domain and returns the cross-correlation function between [-*maxlag*:*maxlag*]. :type fft1: :class:`numpy.ndarray` :param fft1: This array contains the fft of each timeseries to be cross-correlated. :type maxlag: int :param maxlag: This number defines the number of samples (N=2*maxlag + 1) of the CCF that will be returned. :rtype: :class:`numpy.ndarray` :returns: The cross-correlation function between [-maxlag:maxlag] """ # Speed up FFT by padding to optimal size for FFTPACK t0=time.time() if fft1.ndim == 1: axis = 0 nwin=1 elif fft1.ndim == 2: axis = 1 nwin= int(fft1.shape[0]) corr=np.zeros(shape=(nwin,Nfft),dtype=np.complex64) corr[:,:Nfft//2] = np.conj(fft1) * fft2 if method == 'deconv': ind = np.where(np.abs(fft1)>0) corr[ind] /= moving_ave(np.abs(fft1[ind]),10)**2 #corr[ind] /= running_abs_mean(np.abs(fft1[ind]),10) ** 2 elif method == 'coherence': ind = np.where(np.abs(fft1)>0) corr[ind] /= running_abs_mean(np.abs(fft1[ind]),5) ind = np.where(np.abs(fft2)>0) corr[ind] /= running_abs_mean(np.abs(fft2[ind]),5) elif method == 'raw': ind = 1 #--------------------problems: [::-1] only flips along axis=0 direction------------------------ #corr[:,-(Nfft // 2):] = corr[:,:(Nfft // 2)].conjugate()[::-1] # fill in the complex conjugate #---------------------------------------------------------------------------------------------- corr[:,0] = complex(0,0) corr[:,-(Nfft//2)+1:]=np.flip(np.conj(corr[:,1:(Nfft//2)]),axis=axis) corr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(corr, Nfft, axis=axis))) tcorr = np.arange(-Nfft//2 + 1, Nfft//2)*dt ind = np.where(np.abs(tcorr) <= maxlag)[0] if axis == 1: corr = corr[:,ind] else: corr = corr[ind] tcorr=tcorr[ind] t1=time.time() print('original takes '+str(t1-t0)) return corr,tcorr
Example #18
Source File: comp_stacking.py From NoisePy with MIT License | 4 votes |
def adaptive_filter(cc_array,g): ''' the adaptive covariance filter to enhance coherent signals. Fellows the method of Nakata et al., 2015 (Appendix B) the filtered signal [x1] is given by x1 = ifft(P*x1(w)) where x1 is the ffted spectra and P is the filter. P is constructed by using the temporal covariance matrix. PARAMETERS: ---------------------- cc_array: numpy.ndarray contains the 2D traces of daily/hourly cross-correlation functions g: a positive number to adjust the filter harshness RETURNS: ---------------------- narr: numpy vector contains the stacked cross correlation function Written by Chengxin Jiang @Harvard (Oct2019) ''' if cc_array.ndim == 1: print('2D matrix is needed for adaptive filtering') return cc_array N,M = cc_array.shape Nfft = next_fast_len(M) # fft the 2D array spec = scipy.fftpack.fft(cc_array,axis=1,n=Nfft)[:,:M] # make cross-spectrm matrix cspec = np.zeros(shape=(N*N,M),dtype=np.complex64) for ii in range(N): for jj in range(N): kk = ii*N+jj cspec[kk] = spec[ii]*np.conjugate(spec[jj]) S1 = np.zeros(M,dtype=np.complex64) S2 = np.zeros(M,dtype=np.complex64) # construct the filter P for ii in range(N): mm = ii*N+ii S2 += cspec[mm] for jj in range(N): kk = ii*N+jj S1 += cspec[kk] p = np.power((S1-S2)/(S2*(N-1)),g) # make ifft narr = np.real(scipy.fftpack.ifft(np.multiply(p,spec),Nfft,axis=1)[:,:M]) return np.mean(narr,axis=0)
Example #19
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def correlate(fft1,fft2, maxlag,dt, Nfft, method="cross-correlation"): """This function takes ndimensional *data* array, computes the cross-correlation in the frequency domain and returns the cross-correlation function between [-*maxlag*:*maxlag*]. :type fft1: :class:`numpy.ndarray` :param fft1: This array contains the fft of each timeseries to be cross-correlated. :type maxlag: int :param maxlag: This number defines the number of samples (N=2*maxlag + 1) of the CCF that will be returned. :rtype: :class:`numpy.ndarray` :returns: The cross-correlation function between [-maxlag:maxlag] """ # Speed up FFT by padding to optimal size for FFTPACK t0=time.time() if fft1.ndim == 1: axis = 0 nwin=1 elif fft1.ndim == 2: axis = 1 nwin= int(fft1.shape[0]) corr=np.zeros(shape=(nwin,Nfft),dtype=np.complex64) corr[:,:Nfft//2] = np.conj(fft1) * fft2 if method == 'deconv': ind = np.where(np.abs(fft1)>0) corr[ind] /= moving_ave(np.abs(fft1[ind]),10)**2 #corr[ind] /= running_abs_mean(np.abs(fft1[ind]),10) ** 2 elif method == 'coherence': ind = np.where(np.abs(fft1)>0) corr[ind] /= running_abs_mean(np.abs(fft1[ind]),5) ind = np.where(np.abs(fft2)>0) corr[ind] /= running_abs_mean(np.abs(fft2[ind]),5) elif method == 'raw': ind = 1 #--------------------problems: [::-1] only flips along axis=0 direction------------------------ #corr[:,-(Nfft // 2):] = corr[:,:(Nfft // 2)].conjugate()[::-1] # fill in the complex conjugate #---------------------------------------------------------------------------------------------- corr[:,0] = complex(0,0) corr[:,-(Nfft//2)+1:]=np.flip(np.conj(corr[:,1:(Nfft//2)]),axis=axis) corr = np.real(np.fft.ifftshift(scipy.fftpack.ifft(corr, Nfft, axis=axis))) tcorr = np.arange(-Nfft//2 + 1, Nfft//2)*dt ind = np.where(np.abs(tcorr) <= maxlag)[0] if axis == 1: corr = corr[:,ind] else: corr = corr[ind] tcorr=tcorr[ind] t1=time.time() print('original takes '+str(t1-t0)) return corr,tcorr
Example #20
Source File: noise_module.py From NoisePy with MIT License | 4 votes |
def noise_processing(fft_para,dataS,flag): ''' perform time domain and frequency normalization according to user's need. note that this step is not recommended if deconv or coherency method is selected for calculating cross-correlation functions. fft_para: dictionary containing all useful variables used for fft dataS: data matrix containing all segmented noise data flag: boolen variable to output intermediate variables or not ''' # load parameters first time_norm = fft_para['time_norm'] to_whiten = fft_para['to_whiten'] smooth_N = fft_para['smooth_N'] N = dataS.shape[0] #------to normalize in time or not------ if time_norm: t0=time.time() if time_norm == 'one_bit': white = np.sign(dataS) elif time_norm == 'running_mean': #--------convert to 1D array for smoothing in time-domain--------- white = np.zeros(shape=dataS.shape,dtype=dataS.dtype) for kkk in range(N): white[kkk,:] = dataS[kkk,:]/moving_ave(np.abs(dataS[kkk,:]),smooth_N) t1=time.time() if flag: print("temporal normalization takes %f s"%(t1-t0)) else: white = dataS #-----to whiten or not------ if to_whiten: t0=time.time() source_white = whiten(white,fft_para) t1=time.time() if flag: print("spectral whitening takes %f s"%(t1-t0)) else: Nfft = int(next_fast_len(int(dataS.shape[1]))) source_white = scipy.fftpack.fft(white, Nfft, axis=1) return source_white