Python keras.utils.np_utils.to_categorical() Examples
The following are 30
code examples of keras.utils.np_utils.to_categorical().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.utils.np_utils
, or try the search function
.
Example #1
Source File: test_tasks.py From CAPTCHA-breaking with MIT License | 7 votes |
def test_temporal_clf(self): print('temporal classification data:') (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(5,10), classification=True, nb_class=2) print('X_train:', X_train.shape) print('X_test:', X_test.shape) print('y_train:', y_train.shape) print('y_test:', y_test.shape) y_train = to_categorical(y_train) y_test = to_categorical(y_test) model = Sequential() model.add(GRU(X_train.shape[-1], y_train.shape[-1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='adadelta') history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2) self.assertTrue(history.history['val_acc'][-1] > 0.9)
Example #2
Source File: cnn.py From DeepFashion with Apache License 2.0 | 7 votes |
def load_and_preprocess_data_3(): # The data, shuffled and split between train and test sets: (X_train, y_train), (x_test, y_test) = cifar10.load_data() logging.debug('X_train shape: {}'.format(X_train.shape)) logging.debug('train samples: {}'.format(X_train.shape[0])) logging.debug('test samples: {}'.format(x_test.shape[0])) # Convert class vectors to binary class matrices. y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) X_train = X_train.astype('float32') x_test = x_test.astype('float32') X_train /= 255 x_test /= 255 input_shape = X_train[0].shape logging.debug('input_shape {}'.format(input_shape)) input_shape = X_train.shape[1:] logging.debug('input_shape {}'.format(input_shape)) return X_train, x_test, y_train, y_test, input_shape
Example #3
Source File: datasets.py From super-simple-distributed-keras with MIT License | 7 votes |
def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
Example #4
Source File: cnn_example.py From speech-emotion-recognition with MIT License | 6 votes |
def cnn_example(): to_flatten = False x_train, x_test, y_train, y_test, num_labels = extract_data( flatten=to_flatten) y_train = np_utils.to_categorical(y_train) y_test_train = np_utils.to_categorical(y_test) in_shape = x_train[0].shape x_train = x_train.reshape(x_train.shape[0], in_shape[0], in_shape[1], 1) x_test = x_test.reshape(x_test.shape[0], in_shape[0], in_shape[1], 1) model = CNN(input_shape=x_train[0].shape, num_classes=num_labels) model.train(x_train, y_train, x_test, y_test_train) model.evaluate(x_test, y_test) filename = '../dataset/Sad/09b03Ta.wav' print('prediction', model.predict_one( get_feature_vector_from_mfcc(filename, flatten=to_flatten)), 'Actual 3') print('CNN Done')
Example #5
Source File: cnn_model_train.py From Sign-Language-Interpreter-using-Deep-Learning with MIT License | 6 votes |
def train(): with open("train_images", "rb") as f: train_images = np.array(pickle.load(f)) with open("train_labels", "rb") as f: train_labels = np.array(pickle.load(f), dtype=np.int32) with open("val_images", "rb") as f: val_images = np.array(pickle.load(f)) with open("val_labels", "rb") as f: val_labels = np.array(pickle.load(f), dtype=np.int32) train_images = np.reshape(train_images, (train_images.shape[0], image_x, image_y, 1)) val_images = np.reshape(val_images, (val_images.shape[0], image_x, image_y, 1)) train_labels = np_utils.to_categorical(train_labels) val_labels = np_utils.to_categorical(val_labels) print(val_labels.shape) model, callbacks_list = cnn_model() model.summary() model.fit(train_images, train_labels, validation_data=(val_images, val_labels), epochs=15, batch_size=500, callbacks=callbacks_list) scores = model.evaluate(val_images, val_labels, verbose=0) print("CNN Error: %.2f%%" % (100-scores[1]*100)) #model.save('cnn_model_keras2.h5')
Example #6
Source File: HandWritingRecognition.py From Jtyoui with MIT License | 6 votes |
def nn_model(): (x_train, y_train), _ = mnist.load_data() # 归一化 x_train = x_train.reshape(x_train.shape[0], -1) / 255. # one-hot y_train = np_utils.to_categorical(y=y_train, num_classes=10) # constant(value=1.)自定义常数,constant(value=1.)===one() # 创建模型:输入784个神经元,输出10个神经元 model = Sequential([ Dense(units=200, input_dim=784, bias_initializer=constant(value=1.), activation=tanh), Dense(units=100, bias_initializer=one(), activation=tanh), Dense(units=10, bias_initializer=one(), activation=softmax), ]) opt = SGD(lr=0.2, clipnorm=1.) # 优化器 model.compile(optimizer=opt, loss=categorical_crossentropy, metrics=['acc', 'mae']) # 编译 model.fit(x_train, y_train, batch_size=64, epochs=20, callbacks=[RemoteMonitor()]) model_save(model, './model.h5')
Example #7
Source File: test_tasks.py From CAPTCHA-breaking with MIT License | 6 votes |
def test_vector_clf(self): nb_hidden = 10 print('vector classification data:') (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(10,), classification=True, nb_class=2) print('X_train:', X_train.shape) print('X_test:', X_test.shape) print('y_train:', y_train.shape) print('y_test:', y_test.shape) y_train = to_categorical(y_train) y_test = to_categorical(y_test) model = Sequential() model.add(Dense(X_train.shape[-1], nb_hidden)) model.add(Activation('relu')) model.add(Dense(nb_hidden, y_train.shape[-1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='rmsprop') history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2) print(history.history) self.assertTrue(history.history['val_acc'][-1] > 0.9)
Example #8
Source File: sequential.py From keras2pmml with MIT License | 6 votes |
def setUp(self): iris = load_iris() theano.config.floatX = 'float32' X = iris.data.astype(theano.config.floatX) y = iris.target.astype(np.int32) y_ohe = np_utils.to_categorical(y) model = Sequential() model.add(Dense(input_dim=X.shape[1], output_dim=5, activation='tanh')) model.add(Dense(input_dim=5, output_dim=y_ohe.shape[1], activation='sigmoid')) model.compile(loss='categorical_crossentropy', optimizer='sgd') model.fit(X, y_ohe, nb_epoch=10, batch_size=1, verbose=3, validation_data=None) params = {'copyright': 'Václav Čadek', 'model_name': 'Iris Model'} self.model = model self.pmml = keras2pmml(self.model, **params) self.num_inputs = self.model.input_shape[1] self.num_outputs = self.model.output_shape[1] self.num_connection_layers = len(self.model.layers) self.features = ['x{}'.format(i) for i in range(self.num_inputs)] self.class_values = ['y{}'.format(i) for i in range(self.num_outputs)]
Example #9
Source File: test_tasks.py From CAPTCHA-breaking with MIT License | 6 votes |
def test_img_clf(self): print('image classification data:') (X_train, y_train), (X_test, y_test) = get_test_data(nb_train=1000, nb_test=200, input_shape=(3, 32, 32), classification=True, nb_class=2) print('X_train:', X_train.shape) print('X_test:', X_test.shape) print('y_train:', y_train.shape) print('y_test:', y_test.shape) y_train = to_categorical(y_train) y_test = to_categorical(y_test) model = Sequential() model.add(Convolution2D(32, 3, 32, 32)) model.add(Activation('sigmoid')) model.add(Flatten()) model.add(Dense(32, y_test.shape[-1])) model.add(Activation('softmax')) model.compile(loss='categorical_crossentropy', optimizer='sgd') history = model.fit(X_train, y_train, nb_epoch=12, batch_size=16, validation_data=(X_test, y_test), show_accuracy=True, verbose=2) self.assertTrue(history.history['val_acc'][-1] > 0.9)
Example #10
Source File: image_train.py From recognition_gender with MIT License | 6 votes |
def extract_data(self,train_path): imgs, labels, counter = get_file(train_path) print(labels) # 避免过拟合,采用交叉验证,验证集占训练集30%,固定随机种子(random_state) X_train, X_test, y_train, y_test = train_test_split(imgs, labels, test_size=0.3, random_state=random.randint(0, 100)) #数据预处理 keras backend 用的TensorFlow 黑白图片 channel 1 X_train = X_train.reshape(X_train.shape[0], 1, self.img_size, self.img_size) / 255. X_test = X_test.reshape(X_test.shape[0], 1, self.img_size, self.img_size) / 255. #label 转为 one-hot 数据 Y_train = np_utils.to_categorical(y_train, num_classes=counter) Y_test = np_utils.to_categorical(y_test, num_classes=counter) self.X_train = X_train self.X_test = X_test self.Y_train = Y_train self.Y_test = Y_test self.nb_classes = counter #建立model 使用CNN(卷积神经网络)
Example #11
Source File: hyperparam_optimization.py From elephas with MIT License | 6 votes |
def data(): """Data providing function: Make sure to have every relevant import statement included here and return data as used in model function below. This function is separated from model() so that hyperopt won't reload data for each evaluation run. """ from keras.datasets import mnist from keras.utils import np_utils (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 nb_classes = 10 y_train = np_utils.to_categorical(y_train, nb_classes) y_test = np_utils.to_categorical(y_test, nb_classes) return x_train, y_train, x_test, y_test
Example #12
Source File: test_keras.py From docker-python with Apache License 2.0 | 6 votes |
def test_lstm(self): x_train = np.random.random((100, 100, 100)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) x_test = np.random.random((20, 100, 100)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model = Sequential() model.add(LSTM(32, return_sequences=True, input_shape=(100, 100))) model.add(Flatten()) model.add(Dense(10, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer=sgd) model.fit(x_train, y_train, batch_size=32, epochs=1) model.evaluate(x_test, y_test, batch_size=32)
Example #13
Source File: datasets.py From super-simple-distributed-keras with MIT License | 6 votes |
def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
Example #14
Source File: utils.py From imgclsmob with MIT License | 6 votes |
def get_data_generator(data_iterator, num_classes): def get_arrays(db): data = db.data[0].asnumpy() if K.image_data_format() == "channels_last": data = data.transpose((0, 2, 3, 1)) labels = to_categorical( y=db.label[0].asnumpy(), num_classes=num_classes) return data, labels while True: try: db = data_iterator.next() except StopIteration: # logging.warning("get_data exception due to end of data - resetting iterator") data_iterator.reset() db = data_iterator.next() finally: yield get_arrays(db)
Example #15
Source File: test_keras.py From docker-python with Apache License 2.0 | 6 votes |
def test_train(self): train = pd.read_csv("/input/tests/data/train.csv") x_train = train.iloc[:,1:].values.astype('float32') y_train = to_categorical(train.iloc[:,0].astype('int32')) model = Sequential() model.add(Dense(units=10, input_dim=784, activation='softmax')) model.compile( loss='categorical_crossentropy', optimizer=RMSprop(lr=0.001), metrics=['accuracy']) model.fit(x_train, y_train, epochs=1, batch_size=32) # Uses convnet which depends on libcudnn when running on GPU
Example #16
Source File: train.py From neural-network-genetic-algorithm with MIT License | 6 votes |
def get_mnist(): """Retrieve the MNIST dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 128 input_shape = (784,) # Get the data. (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.reshape(60000, 784) x_test = x_test.reshape(10000, 784) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
Example #17
Source File: train.py From neural-network-genetic-algorithm with MIT License | 6 votes |
def get_cifar10(): """Retrieve the CIFAR dataset and process the data.""" # Set defaults. nb_classes = 10 batch_size = 64 input_shape = (3072,) # Get the data. (x_train, y_train), (x_test, y_test) = cifar10.load_data() x_train = x_train.reshape(50000, 3072) x_test = x_test.reshape(10000, 3072) x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train /= 255 x_test /= 255 # convert class vectors to binary class matrices y_train = to_categorical(y_train, nb_classes) y_test = to_categorical(y_test, nb_classes) return (nb_classes, batch_size, input_shape, x_train, x_test, y_train, y_test)
Example #18
Source File: train_LSTM_memLess_8class.py From Automatic-Modulation-Classification with GNU General Public License v3.0 | 6 votes |
def loadData(x_load_path, y_load_path): # load train data x_data_mat = sio.loadmat(x_load_path) x_data_complex = x_data_mat['train_data'] x_data_real = x_data_complex.real x_data_imag = x_data_complex.imag x_data_real = x_data_real.reshape((x_data_real.shape[0], seqLen)) x_data_imag = x_data_imag.reshape((x_data_imag.shape[0], seqLen)) x_train = np.stack((x_data_real, x_data_imag), axis=2) y_data_mat = sio.loadmat(y_load_path) y_data = y_data_mat['train_label'] y_train = np_utils.to_categorical(y_data, nClass) # train data shuffle index = np.arange(y_train.shape[0]) np.random.shuffle(index) x_train = x_train[index,:] y_train = y_train[index] return [x_train, y_train] # fix random seed
Example #19
Source File: train_LSTM_memLess.py From Automatic-Modulation-Classification with GNU General Public License v3.0 | 6 votes |
def loadData(x_load_path, y_load_path): # load train data x_data_mat = sio.loadmat(x_load_path) x_data_complex = x_data_mat['train_data'] x_data_real = x_data_complex.real x_data_imag = x_data_complex.imag x_data_real = x_data_real.reshape((x_data_real.shape[0], seqLen)) x_data_imag = x_data_imag.reshape((x_data_imag.shape[0], seqLen)) x_train = np.stack((x_data_real, x_data_imag), axis=2) y_data_mat = sio.loadmat(y_load_path) y_data = y_data_mat['train_label'] y_train = np_utils.to_categorical(y_data, nClass) # train data shuffle index = np.arange(y_train.shape[0]) np.random.shuffle(index) x_train = x_train[index,:] y_train = y_train[index] return [x_train, y_train] # fix random seed
Example #20
Source File: train_LSTM_memLess.py From Automatic-Modulation-Classification with GNU General Public License v3.0 | 6 votes |
def loadData(x_load_path, y_load_path): # load train data x_data_mat = sio.loadmat(x_load_path) x_data_complex = x_data_mat['train_data'] x_data_real = x_data_complex.real x_data_imag = x_data_complex.imag x_data_real = x_data_real.reshape((x_data_real.shape[0], seqLen)) x_data_imag = x_data_imag.reshape((x_data_imag.shape[0], seqLen)) x_train = np.stack((x_data_real, x_data_imag), axis=2) y_data_mat = sio.loadmat(y_load_path) y_data = y_data_mat['train_label'] y_train = np_utils.to_categorical(y_data, nClass) # train data shuffle index = np.arange(y_train.shape[0]) np.random.shuffle(index) x_train = x_train[index,:] y_train = y_train[index] return [x_train, y_train] # fix random seed
Example #21
Source File: prepare_data.py From VQA-Keras-Visual-Question-Answering with MIT License | 6 votes |
def read_data(data_limit): print "Reading Data..." img_data = h5py.File(data_img) ques_data = h5py.File(data_prepo) img_data = np.array(img_data['images_train']) img_pos_train = ques_data['img_pos_train'][:data_limit] train_img_data = np.array([img_data[_-1,:] for _ in img_pos_train]) # Normalizing images tem = np.sqrt(np.sum(np.multiply(train_img_data, train_img_data), axis=1)) train_img_data = np.divide(train_img_data, np.transpose(np.tile(tem,(4096,1)))) #shifting padding to left side ques_train = np.array(ques_data['ques_train'])[:data_limit, :] ques_length_train = np.array(ques_data['ques_length_train'])[:data_limit] ques_train = right_align(ques_train, ques_length_train) train_X = [train_img_data, ques_train] # NOTE should've consturcted one-hots using exhausitve list of answers, cause some answers may not be in dataset # To temporarily rectify this, all those answer indices is set to 1 in validation set train_y = to_categorical(ques_data['answers'])[:data_limit, :] return train_X, train_y
Example #22
Source File: generate.py From recipe-summarization with MIT License | 6 votes |
def conv_seq_labels(xds, xhs, nflips, model, debug, oov0, glove_idx2idx, vocab_size, nb_unknown_words, idx2word): """Convert description and hedlines to padded input vectors; headlines are one-hot to label.""" batch_size = len(xhs) assert len(xds) == batch_size x = [ vocab_fold(lpadd(xd) + xh, oov0, glove_idx2idx, vocab_size, nb_unknown_words) for xd, xh in zip(xds, xhs)] # the input does not have 2nd eos x = sequence.pad_sequences(x, maxlen=maxlen, value=empty, padding='post', truncating='post') x = flip_headline(x, nflips=nflips, model=model, debug=debug, oov0=oov0, idx2word=idx2word) y = np.zeros((batch_size, maxlenh, vocab_size)) for i, xh in enumerate(xhs): xh = vocab_fold(xh, oov0, glove_idx2idx, vocab_size, nb_unknown_words) + [eos] + [empty] * maxlenh # output does have a eos at end xh = xh[:maxlenh] y[i, :, :] = np_utils.to_categorical(xh, vocab_size) return x, y
Example #23
Source File: model.py From ancient-Chinese-poem-generator with MIT License | 5 votes |
def one_hot_encode(data_X,data_Y,n_vocab): # n_vocab: size of vocabulary n_patterns = len(data_X) # reshape X to be [samples, time steps, features] X = numpy.reshape(data_X, (n_patterns, seq_len, 1)) # normalize X = X / float(n_vocab) # one hot encode the output variable Y = np_utils.to_categorical(data_Y) return X,Y
Example #24
Source File: voc_generator.py From keras-fcn with MIT License | 5 votes |
def next(self): """Next batch.""" with self.lock: index_array, current_index, current_batch_size = next( self.index_generator) batch_x = np.zeros( (current_batch_size,) + self.image_shape, dtype=K.floatx()) batch_y = np.zeros( (current_batch_size,) + self.label_shape, dtype=np.int8) #batch_y = np.reshape(batch_y, (current_batch_size, -1, self.classes)) for i, j in enumerate(index_array): fn = self.filenames[j] x = self.image_set_loader.load_img(fn) x = self.image_data_generator.standardize(x) batch_x[i] = x y = self.image_set_loader.load_seg(fn) y = to_categorical(y, self.classes).reshape(self.label_shape) #y = np.reshape(y, (-1, self.classes)) batch_y[i] = y # save augmented images to disk for debugging #if self.image_set_loader.save_to_dir: # for i in range(current_batch_size): # x = batch_x[i] # y = batch_y[i].argmax( # self.image_data_generator.channel_axis - 1) # if self.image_data_generator.data_format == 'channels_first': # y = y[np.newaxis, ...] # else: # y = y[..., np.newaxis] # self.image_set_loader.save(x, y, current_index + i) return batch_x, batch_y
Example #25
Source File: snli_rnn.py From keras_snli with MIT License | 5 votes |
def get_data(fn, limit=None): raw_data = list(yield_examples(fn=fn, limit=limit)) left = [s1 for _, s1, s2 in raw_data] right = [s2 for _, s1, s2 in raw_data] print(max(len(x.split()) for x in left)) print(max(len(x.split()) for x in right)) LABELS = {'contradiction': 0, 'neutral': 1, 'entailment': 2} Y = np.array([LABELS[l] for l, s1, s2 in raw_data]) Y = np_utils.to_categorical(Y, len(LABELS)) return left, right, Y
Example #26
Source File: test_keras.py From docker-python with Apache License 2.0 | 5 votes |
def test_conv2d(self): # Generate dummy data x_train = np.random.random((100, 100, 100, 3)) y_train = keras.utils.to_categorical(np.random.randint(10, size=(100, 1)), num_classes=10) x_test = np.random.random((20, 100, 100, 3)) y_test = keras.utils.to_categorical(np.random.randint(10, size=(20, 1)), num_classes=10) model = Sequential() # input: 100x100 images with 3 channels -> (100, 100, 3) tensors. # this applies 32 convolution filters of size 3x3 each. model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(100, 100, 3))) model.add(Conv2D(32, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(10, activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) # This throws if libcudnn is not properly installed with on a GPU model.compile(loss='categorical_crossentropy', optimizer=sgd) model.fit(x_train, y_train, batch_size=32, epochs=1) model.evaluate(x_test, y_test, batch_size=32)
Example #27
Source File: AlexNet.py From cnn_evaluation_smoke with GNU General Public License v3.0 | 5 votes |
def generate_arrays(train_filename, batch_size, max_sample, new_size): batch_features = np.zeros((batch_size, new_size, new_size, 3)) batch_labels = np.zeros((batch_size,1)) current_sample_idx = 0 combined_num = 0 print('GENERATOR: Train file = {}, batch = {}, total samples = {}'.format(train_filename, batch_size, max_sample)) while 1: reached_end = False start_idx = current_sample_idx end_idx = batch_size + start_idx if (end_idx > max_sample): end_idx = batch_size reached_end = True print('GENERATOR: Start idx = {}, end_idx = {}, total samples = {}'.format(start_idx, end_idx, max_sample)) x = HDF5Matrix(train_filename, 'data', start=start_idx, end=end_idx) y = HDF5Matrix(train_filename, 'labels', start=start_idx, end=end_idx) x = np.array(x) y = np.array(y) y = np_utils.to_categorical(y, NUMBER_OF_CLASSES) current_sample_idx = end_idx if reached_end: current_sample_idx = 0 print("Shapes. x = {}, y = {}".format(x.shape, y.shape)) #batch_labels = np_utils.to_categorical(batch_labels, NUMBER_OF_CLASSES) yield(x,y)
Example #28
Source File: ResNet.py From cnn_evaluation_smoke with GNU General Public License v3.0 | 5 votes |
def generate_arrays(train_filename, batch_size, max_sample, new_size): batch_features = np.zeros((batch_size, new_size, new_size, 3)) batch_labels = np.zeros((batch_size,1)) current_sample_idx = 0 combined_num = 0 print('GENERATOR: Train file = {}, batch = {}, total samples = {}'.format(train_filename, batch_size, max_sample)) while 1: reached_end = False start_idx = current_sample_idx end_idx = batch_size + start_idx if (end_idx > max_sample): end_idx = batch_size reached_end = True print('GENERATOR: Start idx = {}, end_idx = {}, total samples = {}'.format(start_idx, end_idx, max_sample)) x = HDF5Matrix(train_filename, 'data', start=start_idx, end=end_idx) y = HDF5Matrix(train_filename, 'labels', start=start_idx, end=end_idx) x = np.array(x) y = np.array(y) y = np_utils.to_categorical(y, NUMBER_OF_CLASSES) current_sample_idx = end_idx if reached_end: current_sample_idx = 0 print("Shapes. x = {}, y = {}".format(x.shape, y.shape)) #batch_labels = np_utils.to_categorical(batch_labels, NUMBER_OF_CLASSES) yield(x,y)
Example #29
Source File: InceptionV3.py From cnn_evaluation_smoke with GNU General Public License v3.0 | 5 votes |
def generate_arrays(train_filename, batch_size, max_sample, new_size): batch_features = np.zeros((batch_size, new_size, new_size, 3)) batch_labels = np.zeros((batch_size,1)) current_sample_idx = 0 combined_num = 0 print('GENERATOR: Train file = {}, batch = {}, total samples = {}'.format(train_filename, batch_size, max_sample)) while 1: reached_end = False start_idx = current_sample_idx end_idx = batch_size + start_idx if (end_idx > max_sample): end_idx = batch_size reached_end = True print('GENERATOR: Start idx = {}, end_idx = {}, total samples = {}'.format(start_idx, end_idx, max_sample)) x = HDF5Matrix(train_filename, 'data', start=start_idx, end=end_idx) y = HDF5Matrix(train_filename, 'labels', start=start_idx, end=end_idx) x = np.array(x) y = np.array(y) y = np_utils.to_categorical(y, NUMBER_OF_CLASSES) current_sample_idx = end_idx if reached_end: current_sample_idx = 0 print("Shapes. x = {}, y = {}".format(x.shape, y.shape)) #batch_labels = np_utils.to_categorical(batch_labels, NUMBER_OF_CLASSES) yield(x,y)
Example #30
Source File: lstm_example.py From speech-emotion-recognition with MIT License | 5 votes |
def lstm_example(): to_flatten = False x_train, x_test, y_train, y_test, num_labels = extract_data( flatten=to_flatten) y_train = np_utils.to_categorical(y_train) y_test_train = np_utils.to_categorical(y_test) print('Starting LSTM') model = LSTM(input_shape=x_train[0].shape, num_classes=num_labels) model.train(x_train, y_train, x_test, y_test_train, n_epochs=50) model.evaluate(x_test, y_test) filename = '../dataset/Sad/09b03Ta.wav' print('prediction', model.predict_one( get_feature_vector_from_mfcc(filename, flatten=to_flatten)), 'Actual 3')