Python skimage.color.rgb2hsv() Examples
The following are 26
code examples of skimage.color.rgb2hsv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
skimage.color
, or try the search function
.
Example #1
Source File: BatchDatsetReader.py From Colorization.tensorflow with MIT License | 7 votes |
def _transform(self, filename): try: image = misc.imread(filename) if len(image.shape) < 3: # make sure images are of shape(h,w,3) image = np.array([image for i in range(3)]) if self.image_options.get("resize", False) and self.image_options["resize"]: resize_size = int(self.image_options["resize_size"]) resize_image = misc.imresize(image, [resize_size, resize_size]) else: resize_image = image if self.image_options.get("color", False): option = self.image_options['color'] if option == "LAB": resize_image = color.rgb2lab(resize_image) elif option == "HSV": resize_image = color.rgb2hsv(resize_image) except: print ("Error reading file: %s of shape %s" % (filename, str(image.shape))) raise return np.array(resize_image)
Example #2
Source File: evaluate.py From Global_Convolutional_Network with MIT License | 6 votes |
def masked(img, gt, mask, alpha=1): """Returns image with GT lung field outlined with red, predicted lung field filled with blue.""" rows, cols = img.shape[:2] color_mask = np.zeros((rows, cols, 3)) boundary = morphology.dilation(gt, morphology.disk(3)) ^ gt color_mask[mask == 1] = [0, 0, 1] color_mask[boundary == 1] = [1, 0, 0] img_hsv = color.rgb2hsv(img) color_mask_hsv = color.rgb2hsv(color_mask) img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
Example #3
Source File: dataloader.py From Tag2Pix with MIT License | 6 votes |
def __call__(self, img): if self.color_space == 'rgb': return (img * 2 - 1.) img = img.permute(1, 2, 0) # to [H, W, 3] if self.color_space == 'lab': img = color.rgb2lab(img) # [0~100, -128~127, -128~127] img[:,:,0] = (img[:,:,0] - 50.0) * (1 / 50.) img[:,:,1] = (img[:,:,1] + 0.5) * (1 / 127.5) img[:,:,2] = (img[:,:,2] + 0.5) * (1 / 127.5) elif self.color_space == 'hsv': img = color.rgb2hsv(img) # [0~1, 0~1, 0~1] img = (img * 2 - 1) # to [3, H, W] return torch.from_numpy(img).float().permute(2, 0, 1) # [-1~1, -1~1, -1~1]
Example #4
Source File: inference.py From lung-segmentation-2d with MIT License | 6 votes |
def masked(img, gt, mask, alpha=1): """Returns image with GT lung field outlined with red, predicted lung field filled with blue.""" rows, cols = img.shape color_mask = np.zeros((rows, cols, 3)) boundary = morphology.dilation(gt, morphology.disk(3)) - gt color_mask[mask == 1] = [0, 0, 1] color_mask[boundary == 1] = [1, 0, 0] img_color = np.dstack((img, img, img)) img_hsv = color.rgb2hsv(img_color) color_mask_hsv = color.rgb2hsv(color_mask) img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
Example #5
Source File: demo.py From lung-segmentation-2d with MIT License | 6 votes |
def masked(img, gt, mask, alpha=1): """Returns image with GT lung field outlined with red, predicted lung field filled with blue.""" rows, cols = img.shape color_mask = np.zeros((rows, cols, 3)) boundary = morphology.dilation(gt, morphology.disk(3)) - gt color_mask[mask == 1] = [0, 0, 1] color_mask[boundary == 1] = [1, 0, 0] img_color = np.dstack((img, img, img)) img_hsv = color.rgb2hsv(img_color) color_mask_hsv = color.rgb2hsv(color_mask) img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
Example #6
Source File: Util.py From TrackR-CNN with MIT License | 6 votes |
def get_masked_image(img, mask, multiplier=0.6): """ :param img: The image to be masked. :param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0 :param multiplier: Floating point multiplier that decides the colour of the mask. :return: Masked image """ img_mask = np.zeros_like(img) indices = np.where(mask == 1) img_mask[indices[0], indices[1], 1] = 1 img_mask_hsv = color.rgb2hsv(img_mask) img_hsv = color.rgb2hsv(img) img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0] img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier return color.hsv2rgb(img_hsv) # Visualize spatial offset in HSV color space as rotation to spatial center (H), # distance to spatial center (V)
Example #7
Source File: Util.py From PReMVOS with MIT License | 6 votes |
def get_masked_image(img, mask, multiplier=0.6): """ :param img: The image to be masked. :param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0 :param multiplier: Floating point multiplier that decides the colour of the mask. :return: Masked image """ img_mask = np.zeros_like(img) indices = np.where(mask == 1) img_mask[indices[0], indices[1], 1] = 1 img_mask_hsv = color.rgb2hsv(img_mask) img_hsv = color.rgb2hsv(img) img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0] img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier return color.hsv2rgb(img_hsv)
Example #8
Source File: Util.py From PReMVOS with MIT License | 6 votes |
def get_masked_image(img, mask, multiplier=0.6): """ :param img: The image to be masked. :param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0 :param multiplier: Floating point multiplier that decides the colour of the mask. :return: Masked image """ img_mask = np.zeros_like(img) indices = np.where(mask == 1) img_mask[indices[0], indices[1], 1] = 1 img_mask_hsv = color.rgb2hsv(img_mask) img_hsv = color.rgb2hsv(img) img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0] img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier return color.hsv2rgb(img_hsv)
Example #9
Source File: RDMcolormap.py From pyrsa with GNU Lesser General Public License v3.0 | 6 votes |
def RDMcolormap(nCols=256): # blue-cyan-gray-red-yellow with increasing V (BCGRYincV) anchorCols = np.array([ [0, 0, 1], [0, 1, 1], [.5, .5, .5], [1, 0, 0], [1, 1, 0], ]) # skimage rgb2hsv is intended for 3d images (RGB) # here we add a new axis to our 2d anchorCols to satisfy skimage, and then squeeze anchorCols_hsv = rgb2hsv(anchorCols[np.newaxis, :]).squeeze() incVweight = 1 anchorCols_hsv[:, 2] = (1-incVweight)*anchorCols_hsv[:, 2] + \ incVweight*np.linspace(0.5, 1, anchorCols.shape[0]).T # anchorCols = brightness(anchorCols) anchorCols = hsv2rgb(anchorCols_hsv[np.newaxis, :]).squeeze() cols = colorScale(nCols, anchorCols) return ListedColormap(cols)
Example #10
Source File: inferences.py From Global_Convolutional_Network with MIT License | 6 votes |
def masked(img, gt, mask, alpha=1): """Returns image with GT lung field outlined with red, predicted lung field filled with blue.""" rows, cols = img.shape[:2] color_mask = np.zeros((rows, cols, 3)) boundary = morphology.dilation(gt, morphology.disk(3)) ^ gt color_mask[mask == 1] = [0, 0, 1] color_mask[boundary == 1] = [1, 0, 0] img_hsv = color.rgb2hsv(img) color_mask_hsv = color.rgb2hsv(color_mask) img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
Example #11
Source File: ImageTransform.py From DRFNS with MIT License | 6 votes |
def _apply_(self, *image): res = () n_img = 0 for img in image: if n_img == 0: #pdb.set_trace() ### transform image into HSV img = img_as_ubyte(color.rgb2hsv(img)) ### perturbe each channel H, E, Dab for i in range(3): k_i = self.params['k'][i] b_i = self.params['b'][i] img[:,:,i] = GreyValuePerturbation(img[:, :, i], k_i, b_i, MIN=0., MAX=255) #plt.imshow(img[:,:,i], "gray") #plt.show() sub_res = img_as_ubyte(color.hsv2rgb(img)) else: sub_res = img res += (sub_res,) n_img += 1 return res
Example #12
Source File: tissue_mask.py From NCRF with Apache License 2.0 | 6 votes |
def run(args): logging.basicConfig(level=logging.INFO) slide = openslide.OpenSlide(args.wsi_path) # note the shape of img_RGB is the transpose of slide.level_dimensions img_RGB = np.transpose(np.array(slide.read_region((0, 0), args.level, slide.level_dimensions[args.level]).convert('RGB')), axes=[1, 0, 2]) img_HSV = rgb2hsv(img_RGB) background_R = img_RGB[:, :, 0] > threshold_otsu(img_RGB[:, :, 0]) background_G = img_RGB[:, :, 1] > threshold_otsu(img_RGB[:, :, 1]) background_B = img_RGB[:, :, 2] > threshold_otsu(img_RGB[:, :, 2]) tissue_RGB = np.logical_not(background_R & background_G & background_B) tissue_S = img_HSV[:, :, 1] > threshold_otsu(img_HSV[:, :, 1]) min_R = img_RGB[:, :, 0] > args.RGB_min min_G = img_RGB[:, :, 1] > args.RGB_min min_B = img_RGB[:, :, 2] > args.RGB_min tissue_mask = tissue_S & tissue_RGB & min_R & min_G & min_B np.save(args.npy_path, tissue_mask)
Example #13
Source File: Util.py From MOTSFusion with MIT License | 6 votes |
def get_masked_image(img, mask, multiplier=0.6): """ :param img: The image to be masked. :param mask: Binary mask to be applied. The object should be represented by 1 and the background by 0 :param multiplier: Floating point multiplier that decides the colour of the mask. :return: Masked image """ img_mask = np.zeros_like(img) indices = np.where(mask == 1) img_mask[indices[0], indices[1], 1] = 1 img_mask_hsv = color.rgb2hsv(img_mask) img_hsv = color.rgb2hsv(img) img_hsv[indices[0], indices[1], 0] = img_mask_hsv[indices[0], indices[1], 0] img_hsv[indices[0], indices[1], 1] = img_mask_hsv[indices[0], indices[1], 1] * multiplier return color.hsv2rgb(img_hsv)
Example #14
Source File: transform.py From fast-neural-style-keras with Apache License 2.0 | 5 votes |
def original_colors(original, stylized,original_color): # Histogram normalization in v channel ratio=1. - original_color hsv = color.rgb2hsv(original/255) hsv_s = color.rgb2hsv(stylized/255) hsv_s[:,:,2] = (ratio* hsv_s[:,:,2]) + (1-ratio)*hsv [:,:,2] img = color.hsv2rgb(hsv_s) return img
Example #15
Source File: utils_visualise.py From DeepVis-PredDiff with MIT License | 5 votes |
def get_overlayed_image(x, c, gray_factor_bg = 0.3): ''' For an image x and a relevance vector c, overlay the image with the relevance vector to visualise the influence of the image pixels. ''' imDim = x.shape[0] if np.ndim(c)==1: c = c.reshape((imDim,imDim)) if np.ndim(x)==2: # this happens with the MNIST Data x = 1-np.dstack((x, x, x))*gray_factor_bg # make it a bit grayish if np.ndim(x)==3: # this is what happens with cifar data x = color.rgb2gray(x) x = 1-(1-x)*0.5 x = np.dstack((x,x,x)) alpha = 0.8 # Construct a colour image to superimpose im = plt.imshow(c, cmap = cm.seismic, vmin=-np.max(np.abs(c)), vmax=np.max(np.abs(c)), interpolation='nearest') color_mask = im.to_rgba(c)[:,:,[0,1,2]] # Convert the input image and color mask to Hue Saturation Value (HSV) colorspace img_hsv = color.rgb2hsv(x) color_mask_hsv = color.rgb2hsv(color_mask) # Replace the hue and saturation of the original image # with that of the color mask img_hsv[..., 0] = color_mask_hsv[..., 0] img_hsv[..., 1] = color_mask_hsv[..., 1] * alpha img_masked = color.hsv2rgb(img_hsv) return img_masked
Example #16
Source File: caffe_traininglayers.py From interactive-deep-colorization with MIT License | 5 votes |
def forward(self, bottom, top): for nn in range(self.N): top[0].data[nn, :, :, :] = color.rgb2hsv(bottom[0].data[nn, ::-1, :, :].astype('uint8').transpose((1, 2, 0))).transpose((2, 0, 1))
Example #17
Source File: image_tfs.py From tanda with MIT License | 5 votes |
def TF_shift_hue(x, shift=0.0): assert len(x.shape) == 3 h, w, nc = x.shape hsv = rgb2hsv(x) hsv[:,:,0] += shift return hsv2rgb(hsv)
Example #18
Source File: __init__.py From anna with BSD 2-Clause "Simplified" License | 5 votes |
def color_augment_image(data): image = data.transpose(1, 2, 0) hsv = color.rgb2hsv(image) # Contrast 2 s_factor1 = numpy.random.uniform(0.25, 4) s_factor2 = numpy.random.uniform(0.7, 1.4) s_factor3 = numpy.random.uniform(-0.1, 0.1) hsv[:, :, 1] = (hsv[:, :, 1] ** s_factor1) * s_factor2 + s_factor3 v_factor1 = numpy.random.uniform(0.25, 4) v_factor2 = numpy.random.uniform(0.7, 1.4) v_factor3 = numpy.random.uniform(-0.1, 0.1) hsv[:, :, 2] = (hsv[:, :, 2] ** v_factor1) * v_factor2 + v_factor3 # Color h_factor = numpy.random.uniform(-0.1, 0.1) hsv[:, :, 0] = hsv[:, :, 0] + h_factor hsv[hsv < 0] = 0.0 hsv[hsv > 1] = 1.0 rgb = color.hsv2rgb(hsv) data_out = rgb.transpose(2, 0, 1) return data_out
Example #19
Source File: make_cifar_p.py From robustness with Apache License 2.0 | 5 votes |
def brightness(_x, c=0.): _x = np.array(_x, copy=True) / 255. _x = skcolor.rgb2hsv(_x) _x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1) _x = skcolor.hsv2rgb(_x) return np.uint8(_x * 255)
Example #20
Source File: make_imagenet_p.py From robustness with Apache License 2.0 | 5 votes |
def brightness(_x, c=0.): _x = np.array(_x, copy=True) / 255. _x = skcolor.rgb2hsv(_x) _x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1) _x = skcolor.hsv2rgb(_x) return np.uint8(_x * 255)
Example #21
Source File: pf6_quadtree_decomposition.py From aim with MIT License | 5 votes |
def color_entropy(inp): inp = inp / 255. img = color.rgb2hsv(inp) h_bins = 30 s_bins = 32 H = [] S = [] img = img.reshape(-1, 3) img = [tuple(l) for l in img] for pixel in img: H.append(pixel[0] * 360.) S.append(pixel[1] * 100.) h, x = np.histogram(H, bins=h_bins, range=(0, 360), density=True) s, y = np.histogram(S, bins=s_bins, range=(0, 100), density=True) h = h.ravel() h = h * 100. h = h + 0.000000000001 h_log = [math.log(y) for y in h] h_result = h * h_log s = s.ravel() s = s * 100. s = s + 0.000000000001 s_log = [math.log(y) for y in s] s_result = s * s_log result = abs(np.sum(h_result) + np.sum(s_result)) / 2 return result # Recursion
Example #22
Source File: cp3_HSV_avg.py From aim with MIT License | 5 votes |
def execute(b64): b64 = base64.b64decode(b64) b64 = BytesIO(b64) img = Image.open(b64) img = np.array(img) img = util.img_as_ubyte(img) img = img / 255. # this division is needed to get proper values. for hue, saturation and value (0 to 360, 0 to 1,0 to 1) img = color.rgb2hsv(img) img = img.reshape(-1, 3) img = [tuple(l) for l in img] h = [] s = [] v = [] # Give each channel its own list for items in img: [hue, sat, val] = [items[0], items[1], items[2]] h.append(hue * 360) s.append(sat) v.append(val) # Hue is an angle, so cannot simple add and average it sumsin = sum(sind(h[:])) sumcos = sum(cosd(h[:])) # Get the average value and standard deviation over H,S and V avgHue = atan2d(sumsin, sumcos) % 360 avgSaturation = np.mean(s) stdSaturation = np.std(s) avgValue = np.mean(v) stdValue = np.std(v) result = [avgHue, avgSaturation, stdSaturation, avgValue, stdValue] return result # Functions for easy use of radials in sin,cos and tan. based on: # https://stackoverflow.com/questions/43100286/python-trigonometric-calculations-in-degrees
Example #23
Source File: make_imagenet_p_inception.py From robustness with Apache License 2.0 | 5 votes |
def brightness(_x, c=0.): _x = np.array(_x, copy=True) / 255. _x = skcolor.rgb2hsv(_x) _x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1) _x = skcolor.hsv2rgb(_x) return np.uint8(_x * 255)
Example #24
Source File: make_imagenet_64_p.py From robustness with Apache License 2.0 | 5 votes |
def brightness(_x, c=0.): _x = np.array(_x, copy=True) / 255. _x = skcolor.rgb2hsv(_x) _x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1) _x = skcolor.hsv2rgb(_x) return np.uint8(_x * 255)
Example #25
Source File: make_tinyimagenet_p.py From robustness with Apache License 2.0 | 5 votes |
def brightness(_x, c=0.): _x = np.array(_x, copy=True) / 255. _x = skcolor.rgb2hsv(_x) _x[:, :, 2] = np.clip(_x[:, :, 2] + c, 0, 1) _x = skcolor.hsv2rgb(_x) return np.uint8(_x * 255)
Example #26
Source File: cp4_HSV_unique.py From aim with MIT License | 4 votes |
def execute(b64): b64 = base64.b64decode(b64) b64 = BytesIO(b64) img = Image.open(b64) img= np.array(img) img = util.img_as_ubyte(img) img = color.rgb2hsv(img) img = img.reshape(-1, 3) img = [tuple(l) for l in img] hist = collections.Counter(img) hist = hist.items() hsv_unique = [] count = [] h = [] s = [] v = [] for x in range(len(hist)): add = [hist[x][0][0], hist[x][0][1], hist[x][0][2]] hsv_unique.append(add) count.append(hist[x][1]) h.append(hist[x][0][0]) s.append(hist[x][0][1]) v.append(hist[x][0][2]) # Get all unique values, still has all counts (so no minimal occurence). This probably needs some changing in the future h_unique = np.unique(h) s_unique = np.unique(s) v_unique = np.unique(v) new_hsv = [] # Only often enough occuring values for hsv for x in range(len(hsv_unique)): if count[x] > 5: new_hsv.append(hsv_unique[x]) result = [len(new_hsv), len(h_unique), len(s_unique), len(v_unique)] return result