Python sklearn.metrics.hamming_loss() Examples

The following are 30 code examples of sklearn.metrics.hamming_loss(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module sklearn.metrics , or try the search function .
Example #1
Source File: multi_class_classification.py    From edge2vec with BSD 3-Clause "New" or "Revised" License 11 votes vote down vote up
def multi_class_classification(data_X,data_Y):
    '''
    calculate multi-class classification and return related evaluation metrics
    '''

    svc = svm.SVC(C=1, kernel='linear')
    # X_train, X_test, y_train, y_test = train_test_split( data_X, data_Y, test_size=0.4, random_state=0) 
    clf = svc.fit(data_X, data_Y) #svm
    # array = svc.coef_
    # print array
    predicted = cross_val_predict(clf, data_X, data_Y, cv=2)
    print "accuracy",metrics.accuracy_score(data_Y, predicted)
    print "f1 score macro",metrics.f1_score(data_Y, predicted, average='macro') 
    print "f1 score micro",metrics.f1_score(data_Y, predicted, average='micro') 
    print "precision score",metrics.precision_score(data_Y, predicted, average='macro') 
    print "recall score",metrics.recall_score(data_Y, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(data_Y, predicted)
    print "classification_report", metrics.classification_report(data_Y, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(data_Y, predicted)
    # print "log_loss", metrics.log_loss(data_Y, predicted)
    print "zero_one_loss", metrics.zero_one_loss(data_Y, predicted)
    # print "AUC&ROC",metrics.roc_auc_score(data_Y, predicted)
    # print "matthews_corrcoef", metrics.matthews_corrcoef(data_Y, predicted) 
Example #2
Source File: link_prediction.py    From edge2vec with BSD 3-Clause "New" or "Revised" License 7 votes vote down vote up
def evaluation_analysis(true_label,predicted): 
    '''
    return all metrics results
    '''
    print "accuracy",metrics.accuracy_score(true_label, predicted)
    print "f1 score macro",metrics.f1_score(true_label, predicted, average='macro')     
    print "f1 score micro",metrics.f1_score(true_label, predicted, average='micro') 
    print "precision score",metrics.precision_score(true_label, predicted, average='macro') 
    print "recall score",metrics.recall_score(true_label, predicted, average='macro') 
    print "hamming_loss",metrics.hamming_loss(true_label, predicted)
    print "classification_report", metrics.classification_report(true_label, predicted)
    print "jaccard_similarity_score", metrics.jaccard_similarity_score(true_label, predicted)
    print "log_loss", metrics.log_loss(true_label, predicted)
    print "zero_one_loss", metrics.zero_one_loss(true_label, predicted)
    print "AUC&ROC",metrics.roc_auc_score(true_label, predicted)
    print "matthews_corrcoef", metrics.matthews_corrcoef(true_label, predicted) 
Example #3
Source File: test_classification.py    From Mastering-Elasticsearch-7.0 with MIT License 7 votes vote down vote up
def test_multilabel_hamming_loss():
    # Dense label indicator matrix format
    y1 = np.array([[0, 1, 1], [1, 0, 1]])
    y2 = np.array([[0, 0, 1], [1, 0, 1]])
    w = np.array([1, 3])

    assert_equal(hamming_loss(y1, y2), 1 / 6)
    assert_equal(hamming_loss(y1, y1), 0)
    assert_equal(hamming_loss(y2, y2), 0)
    assert_equal(hamming_loss(y2, 1 - y2), 1)
    assert_equal(hamming_loss(y1, 1 - y1), 1)
    assert_equal(hamming_loss(y1, np.zeros(y1.shape)), 4 / 6)
    assert_equal(hamming_loss(y2, np.zeros(y1.shape)), 0.5)
    assert_equal(hamming_loss(y1, y2, sample_weight=w), 1. / 12)
    assert_equal(hamming_loss(y1, 1-y2, sample_weight=w), 11. / 12)
    assert_equal(hamming_loss(y1, np.zeros_like(y1), sample_weight=w), 2. / 3)
    # sp_hamming only works with 1-D arrays
    assert_equal(hamming_loss(y1[0], y2[0]), sp_hamming(y1[0], y2[0]))
    assert_warns_message(DeprecationWarning,
                         "The labels parameter is unused. It was"
                         " deprecated in version 0.21 and"
                         " will be removed in version 0.23",
                         hamming_loss, y1, y2, labels=[0, 1]) 
Example #4
Source File: deep_conv_classification_alt48_luad10_skcm10_v0.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (10000, classn), dtype = np.int32);
    Or = np.empty(shape = (10000, classn), dtype = np.float32);
    Tr = np.empty(shape = (10000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #5
Source File: deep_conv_classification_alt39.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #6
Source File: deep_conv_classification_alt29.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, batchsize = 100, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #7
Source File: deep_conv_classification_alt48_heatmap_only_melanoma.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (1000000, classn), dtype = np.int32);
    Or = np.empty(shape = (1000000, classn), dtype = np.float32);
    Tr = np.empty(shape = (1000000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #8
Source File: deep_conv_classification_alt48_luad10_luad10in20_brca10x1_heatmap.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (1000000, classn), dtype = np.int32);
    Or = np.empty(shape = (1000000, classn), dtype = np.float32);
    Tr = np.empty(shape = (1000000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #9
Source File: deep_conv_classification_lpatch_alt3.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (10000, classn), dtype = np.int32);
    Or = np.empty(shape = (10000, classn), dtype = np.float32);
    Tr = np.empty(shape = (10000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #10
Source File: deep_conv_classification_alt36-sp-cnn.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #11
Source File: deep_conv_classification_alt51_luad10_luad10in20_brca10x2.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, y_val, BatchSize, shuffle = False):
        inputs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #12
Source File: deep_conv_classification_alt48_adeno_t0.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (10000, classn), dtype = np.int32);
    Or = np.empty(shape = (10000, classn), dtype = np.float32);
    Tr = np.empty(shape = (10000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #13
Source File: deep_conv_classification_alt28.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, batchsize = 100, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #14
Source File: deep_conv_classification_alt53.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #15
Source File: deep_conv_classification_alt34.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, batchsize = 100, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #16
Source File: deep_conv_classification_alt35_deploy.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #17
Source File: deep_conv_classification_alt48maxp_luad10_luad10in20_brca10x1.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #18
Source File: deep_conv_classification_alt36.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #19
Source File: deep_conv_classification_alt52.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #20
Source File: deep_conv_classification_alt48maxp_luad10_luad10in20_brca10x2.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #21
Source File: deep_conv_classification_alt48_only_skcm_t0.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (10000, classn), dtype = np.int32);
    Or = np.empty(shape = (10000, classn), dtype = np.float32);
    Tr = np.empty(shape = (10000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #22
Source File: deep_conv_classification_alt51_heatmap.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (1000000, classn), dtype = np.int32);
    Or = np.empty(shape = (1000000, classn), dtype = np.float32);
    Tr = np.empty(shape = (1000000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, y_val, BatchSize, shuffle = False):
        inputs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #23
Source File: deep_conv_classification_alt48_adeno_prad_t1_heatmap.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (1000000, classn), dtype = np.int32);
    Or = np.empty(shape = (1000000, classn), dtype = np.float32);
    Tr = np.empty(shape = (1000000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #24
Source File: deep_conv_classification_alt48_luad10in20_brca10.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #25
Source File: deep_conv_classification_alt62.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #26
Source File: deep_conv_classification_alt41.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #27
Source File: deep_conv_classification_alt48_adeno_prad_t1.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (10000, classn), dtype = np.int32);
    Or = np.empty(shape = (10000, classn), dtype = np.float32);
    Tr = np.empty(shape = (10000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #28
Source File: deep_conv_classification_alt54.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #29
Source File: deep_conv_classification_alt48_luad10_luad10in20_brca10x2.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr; 
Example #30
Source File: deep_conv_classification_alt38.py    From u24_lymphocyte with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def val_fn_epoch(classn, val_fn, X_val, a_val, y_val):
    val_err = 0;
    Pr = np.empty(shape = (100000, classn), dtype = np.int32);
    Or = np.empty(shape = (100000, classn), dtype = np.float32);
    Tr = np.empty(shape = (100000, classn), dtype = np.int32);
    val_batches = 0;
    nline = 0;
    for batch in iterate_minibatches(X_val, a_val, y_val, BatchSize, shuffle = False):
        inputs, augs, targets = batch;
        err, output = multi_win_during_val(val_fn, inputs, augs, targets);
        pred = from_output_to_pred(output);
        val_err += err;
        Pr[nline:nline+len(output)] = pred;
        Or[nline:nline+len(output)] = output;
        Tr[nline:nline+len(output)] = targets;
        val_batches += 1;
        nline += len(output);
    Pr = Pr[:nline];
    Or = Or[:nline];
    Tr = Tr[:nline];
    val_err = val_err / val_batches;
    val_ham = (1 - hamming_loss(Tr, Pr));
    val_acc = accuracy_score(Tr, Pr);
    return val_err, val_ham, val_acc, Pr, Or, Tr;