Python sklearn.metrics.median_absolute_error() Examples
The following are 22
code examples of sklearn.metrics.median_absolute_error().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.metrics
, or try the search function
.
Example #1
Source File: test_regression.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(max_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [-1.], [-1.]) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [1., 2., 3.], [1., -2., 3.]) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [1., -2., 3.], [1., 2., 3.])
Example #2
Source File: regression_tests.py From drifter_ml with MIT License | 6 votes |
def mae_cv(self, cv): """ This method performs cross-validation over median absolute error. Parameters ---------- * cv : integer The number of cross validation folds to perform Returns ------- Returns a scores of the k-fold median absolute error. """ mae = metrics.make_scorer(metrics.median_absolute_error) result = cross_validate(self.reg, self.X, self.y, cv=cv, scoring=(mae)) return self.get_test_score(result)
Example #3
Source File: train_fingerprint_model.py From KerasNeuralFingerprint with MIT License | 6 votes |
def eval_metrics_on(predictions, labels): ''' assuming this is a regression task; labels are continuous-valued floats returns most regression-related scores for the given predictions/targets as a dictionary: r2, mean_abs_error, mse, rmse, median_absolute_error, explained_variance_score ''' if len(labels[0])==2: #labels is list of data/labels pairs labels = np.concatenate([l[1] for l in labels]) predictions = predictions[:,0] r2 = metrics.r2_score(labels, predictions) mean_abs_error = np.abs(predictions - labels).mean() mse = ((predictions - labels)**2).mean() rmse = np.sqrt(mse) median_absolute_error = metrics.median_absolute_error(labels, predictions) # robust to outliers explained_variance_score = metrics.explained_variance_score(labels, predictions) # best score = 1, lower is worse return {'r2':r2, 'mean_abs_error':mean_abs_error, 'mse':mse, 'rmse':rmse, 'median_absolute_error':median_absolute_error, 'explained_variance_score':explained_variance_score}
Example #4
Source File: baselines.py From AirBnbPricePrediction with MIT License | 6 votes |
def print_evaluation_metrics2(trained_model, trained_model_name, X_test, y_test): print('--------- For Model: ', trained_model_name, ' --------- (Train Data)\n') predicted_values = trained_model.predict(X_test) print("Mean absolute error: ", metrics.mean_absolute_error(y_test, predicted_values)) print("Median absolute error: ", metrics.median_absolute_error(y_test, predicted_values)) print("Mean squared error: ", metrics.mean_squared_error( y_test, predicted_values)) print("R2: ", metrics.r2_score(y_test, predicted_values)) plt.scatter(y_test, predicted_values/y_test, color='black') # plt.plot(x, y_pred, color='blue', linewidth=3) plt_name = trained_model_name + " (Train Data)" plt.title(plt_name) plt.xlabel('$y_{test}$') plt.ylabel('$y_{predicted}/y_{test}$') plt.savefig('%s.png' %plt_name, bbox_inches='tight') print("---------------------------------------\n")
Example #5
Source File: baselines.py From AirBnbPricePrediction with MIT License | 6 votes |
def print_evaluation_metrics(trained_model, trained_model_name, X_test, y_test): print('--------- For Model: ', trained_model_name, ' ---------\n') predicted_values = trained_model.predict(X_test) print("Mean absolute error: ", metrics.mean_absolute_error(y_test, predicted_values)) print("Median absolute error: ", metrics.median_absolute_error(y_test, predicted_values)) print("Mean squared error: ", metrics.mean_squared_error( y_test, predicted_values)) print("R2: ", metrics.r2_score(y_test, predicted_values)) plt.scatter(y_test, predicted_values, color='black') # plt.plot(x, y_pred, color='blue', linewidth=3) plt.title(trained_model_name) plt.xlabel('$y_{test}$') plt.ylabel('$y_{predicted}/y_{test}$') plt.savefig('%s.png' %trained_model_name, bbox_inches='tight') print("---------------------------------------\n")
Example #6
Source File: custom_scores_HO.py From Auto_ViML with Apache License 2.0 | 5 votes |
def gini_meae(truth, predictions): score = median_absolute_error(truth, predictions) return score
Example #7
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_regression_metrics_at_limits(): assert_almost_equal(mean_squared_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_squared_log_error([0.], [0.]), 0.00, 2) assert_almost_equal(mean_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(median_absolute_error([0.], [0.]), 0.00, 2) assert_almost_equal(explained_variance_score([0.], [0.]), 1.00, 2) assert_almost_equal(r2_score([0., 1], [0., 1]), 1.00, 2) assert_raises_regex(ValueError, "Mean Squared Logarithmic Error cannot be " "used when targets contain negative values.", mean_squared_log_error, [-1.], [-1.])
Example #8
Source File: test_regression.py From twitter-stock-recommendation with MIT License | 5 votes |
def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_squared_log_error(y_true, y_pred), mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred))) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.)
Example #9
Source File: RegressorAnalyzer.py From CDSS with GNU General Public License v3.0 | 5 votes |
def _score_median_absolute_error(self): return median_absolute_error(self._y_test, self._y_predicted)
Example #10
Source File: run_models.py From AirBnbPricePrediction with MIT License | 5 votes |
def print_evaluation_metrics2(trained_model, trained_model_name, X_test, y_test): print('--------- For Model: ', trained_model_name, ' --------- (Train Data)\n') predicted_values = trained_model.predict(X_test) print("Mean absolute error: ", metrics.mean_absolute_error(y_test, predicted_values)) print("Median absolute error: ", metrics.median_absolute_error(y_test, predicted_values)) print("Mean squared error: ", metrics.mean_squared_error( y_test, predicted_values)) print("R2: ", metrics.r2_score(y_test, predicted_values))
Example #11
Source File: run_models.py From AirBnbPricePrediction with MIT License | 5 votes |
def print_evaluation_metrics(trained_model, trained_model_name, X_test, y_test): print('--------- For Model: ', trained_model_name, ' ---------\n') predicted_values = trained_model.predict(X_test) print("Mean absolute error: ", metrics.mean_absolute_error(y_test, predicted_values)) print("Median absolute error: ", metrics.median_absolute_error(y_test, predicted_values)) print("Mean squared error: ", metrics.mean_squared_error( y_test, predicted_values)) print("R2: ", metrics.r2_score(y_test, predicted_values))
Example #12
Source File: test_robust_weighted_estimator.py From scikit-learn-extra with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_corrupted_regression(loss, weighting): reg = RobustWeightedEstimator( SGDRegressor(), loss=loss, max_iter=50, weighting=weighting, k=4, c=None, random_state=rng, ) reg.fit(X_rc, y_rc) score = median_absolute_error(reg.predict(X_rc), y_rc) assert score < 0.2
Example #13
Source File: custom_scores.py From Auto_ViML with Apache License 2.0 | 5 votes |
def gini_meae(truth, predictions): score = median_absolute_error(truth, predictions) return score
Example #14
Source File: regression_metric.py From FATE with Apache License 2.0 | 5 votes |
def compute(labels, pred_scores): return median_absolute_error(labels, pred_scores)
Example #15
Source File: prototype_test_framework.py From drifter_ml with MIT License | 5 votes |
def mae_upper_boundary(upper_boundary): y_pred = self.reg.predict(self.X) if metrics.median_absolute_error(self.y, y_pred) > upper_boundary: return False return True
Example #16
Source File: regression_tests.py From drifter_ml with MIT License | 5 votes |
def mae_result(self, reg): y_pred = reg.predict(self.X) return metrics.median_absolute_error(self.y, y_pred)
Example #17
Source File: regression_tests.py From drifter_ml with MIT License | 5 votes |
def cross_val_mae_result(self, reg, cv=3): y_pred = cross_val_predict(reg, self.X, self.y) return metrics.median_absolute_error(self.y, y_pred)
Example #18
Source File: regression_tests.py From drifter_ml with MIT License | 5 votes |
def mae_upper_boundary(self, upper_boundary): y_pred = self.reg.predict(self.X) if metrics.median_absolute_error(self.y, y_pred) > upper_boundary: return False return True
Example #19
Source File: median_absolute_error.py From driverlessai-recipes with Apache License 2.0 | 5 votes |
def score(self, actual: np.array, predicted: np.array, sample_weight: typing.Optional[np.array] = None, labels: typing.Optional[np.array] = None, **kwargs) -> float: return median_absolute_error(actual, predicted)
Example #20
Source File: test_regression.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def test_regression_metrics(n_samples=50): y_true = np.arange(n_samples) y_pred = y_true + 1 assert_almost_equal(mean_squared_error(y_true, y_pred), 1.) assert_almost_equal(mean_squared_log_error(y_true, y_pred), mean_squared_error(np.log(1 + y_true), np.log(1 + y_pred))) assert_almost_equal(mean_absolute_error(y_true, y_pred), 1.) assert_almost_equal(median_absolute_error(y_true, y_pred), 1.) assert_almost_equal(max_error(y_true, y_pred), 1.) assert_almost_equal(r2_score(y_true, y_pred), 0.995, 2) assert_almost_equal(explained_variance_score(y_true, y_pred), 1.)
Example #21
Source File: run_models.py From AirBnbPricePrediction with MIT License | 4 votes |
def kmeans(X_train, y_train, X_val, y_val): n_clusters = 8 kmeans = KMeans(n_clusters=n_clusters, random_state=0, verbose=0, n_jobs=int(0.8*n_cores)).fit(X_train) c_train = kmeans.predict(X_train) c_pred = kmeans.predict(X_val) centroids = kmeans.cluster_centers_ y_val_stats = None predicted_values = None y_train_stats = None labels_stats = None for i in range(n_clusters): print('--------analyzing cluster %d--------' %i) train_mask = c_train==i std_train = np.std(y_train[train_mask]) mean_train = np.mean(y_train[train_mask]) print("# examples & price mean & std for training set within cluster %d is:(%d, %.2f, %.2f)" %(i, train_mask.sum(), np.float(mean_train), np.float(std_train))) pred_mask = c_pred==i std_pred = np.std(y_val[pred_mask]) mean_pred = np.mean(y_val[pred_mask]) print("# examples & price mean & std for validation set within cluster %d is:(%d, %.2f, %.2f)" %(i, pred_mask.sum(), np.float(mean_pred), np.float(std_pred))) if pred_mask.sum() == 0: print('Zero membered test set! Skipping the test and training validation.') continue #LinearModelRidge(X_train[train_mask], y_train[train_mask], X_val[pred_mask], y_val[pred_mask]) regr = Ridge(alpha = 7) #7 regr.fit(X_train[train_mask], y_train[train_mask]) labels_pred = regr.predict(X_train[train_mask].values) y_pred = regr.predict(X_val[pred_mask].values) if (y_val_stats is None): y_val_stats = copy.deepcopy(y_val[pred_mask]) y_train_stats = copy.deepcopy(y_train[train_mask]) predicted_values = copy.deepcopy(y_pred) labels_stats = copy.deepcopy(labels_pred) else: y_val_stats = y_val_stats.append(y_val[pred_mask]) y_train_stats = y_train_stats.append(y_train[train_mask]) predicted_values = np.append(predicted_values, y_pred) labels_stats = np.append(labels_stats, labels_pred) print('--------Finished analyzing cluster %d--------' %i) print("Mean absolute error: ", metrics.mean_absolute_error(y_val_stats, predicted_values)) print("Median absolute error: ", metrics.median_absolute_error(y_val_stats, predicted_values)) print("Mean squared error: ", metrics.mean_squared_error( y_val_stats, predicted_values)) print("R2: ", metrics.r2_score(y_val_stats, predicted_values)) print('------------TRAIN--------------------') print("Mean absolute error: ", metrics.mean_absolute_error(y_train_stats, labels_stats)) print("Median absolute error: ", metrics.median_absolute_error(y_train_stats, labels_stats)) print("Mean squared error: ", metrics.mean_squared_error( y_train_stats, labels_stats)) print("R2: ", metrics.r2_score(y_train_stats, labels_stats)) return c_pred, centroids
Example #22
Source File: run.py From KitcheNette with Apache License 2.0 | 4 votes |
def save_prediction(model, loader, dataset, args): model.eval() csv_writer = csv.writer(open(args.checkpoint_dir + 'prediction_' + args.model_name + '.csv', 'w')) csv_writer.writerow(['ingr1', 'ingr1_cate', 'ingr2', 'ingr2_cate', 'prediction', 'target']) tar_set = [] pred_set = [] ingr2category = pickle.load(open(args.ingr2category_dir, 'rb')) for d_idx, (d1, d1_r, d1_c, d1_l, d2, d2_r, d2_c, d2_l, score) in enumerate(loader): # Run model for getting predictions outputs = model(d1_r.cuda(), d1_c.cuda(), d1_l, d2_r.cuda(), d2_c.cuda(), d2_l) predictions = outputs[2].data.cpu().numpy() targets = score.data.tolist() tar_set += list(targets) pred_set += list(predictions) for a1, a2, a3, a4 in zip(d1, d2, predictions, targets): csv_writer.writerow([a1, ingr2category[a1], a2, ingr2category[a2], a3, a4]) # Print progress if d_idx % args.print_step == 0 or d_idx == len(loader) - 1: _progress = '{}/{} saving unknwon predictions..'.format( d_idx + 1, len(loader)) LOGGER.info(_progress) mse = mean_squared_error(tar_set, pred_set) rmse = sqrt(mse) mae = mean_absolute_error(tar_set, pred_set) mae2 = median_absolute_error(tar_set, pred_set) corr = np.corrcoef(tar_set, pred_set)[0][1] ev = explained_variance_score(tar_set, pred_set) r2 = r2_score(tar_set, pred_set) LOGGER.info('Loss\tMSE\tMAE\tMAE2\tCorr\tEV\t\tR2') LOGGER.info('{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'.format( rmse, mse, mae, mae2, corr, ev, r2)) # Outputs pred scores for new pair dataset