Python tensorflow.contrib.layers.python.layers.initializers.xavier_initializer() Examples
The following are 18
code examples of tensorflow.contrib.layers.python.layers.initializers.xavier_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.contrib.layers.python.layers.initializers
, or try the search function
.
Example #1
Source File: det_lesion.py From liverseg-2017-nipsws with MIT License | 6 votes |
def det_lesion_resnet(inputs, is_training_option=False, scope='det_lesion'): """Defines the network Args: inputs: Tensorflow placeholder that contains the input image scope: Scope name for the network Returns: net: Output Tensor of the network end_points: Dictionary with all Tensors of the network """ with tf.variable_scope(scope, 'det_lesion', [inputs]) as sc: end_points_collection = sc.name + '_end_points' with slim.arg_scope(resnet_v1.resnet_arg_scope()): net, end_points = resnet_v1.resnet_v1_50(inputs, is_training=is_training_option) net = slim.flatten(net, scope='flatten5') net = slim.fully_connected(net, 1, activation_fn=tf.nn.sigmoid, weights_initializer=initializers.xavier_initializer(), scope='output') utils.collect_named_outputs(end_points_collection, 'det_lesion/output', net) end_points = slim.utils.convert_collection_to_dict(end_points_collection) return net, end_points
Example #2
Source File: model.py From deep_learning with MIT License | 6 votes |
def __init__(self): self.nums_tags = 4 self.embedding_size = 50 self.max_epoch = 10 self.learning_rate = 0.5 self.lstm_dim = 128 self.global_steps = tf.Variable(0, trainable=False) self.best_dev_f1 = tf.Variable(0.0, trainable=False) self.checkpoint_dir = "./model/" self.checkpoint_path = "./model/train_model.ckpt" self.initializer = initializers.xavier_initializer() self.entry = "train" self.vocab_dir = None self.init_checkpoint = None self.bert_config = None self.is_training = True if self.entry == "train" else False
Example #3
Source File: utils.py From pynlp with MIT License | 6 votes |
def _get_weights_wrapper( name, shape, dtype=tf.float32, initializer=initializers.xavier_initializer(), weights_decay_factor=None ): """Wrapper over _get_variable_wrapper() to get weights, with weights decay factor in loss. """ weights = _get_variable_wrapper( name=name, shape=shape, dtype=dtype, initializer=initializer ) if weights_decay_factor is not None and weights_decay_factor > 0.0: weights_wd = tf.multiply( tf.nn.l2_loss(weights), weights_decay_factor, name=name + '/l2loss' ) tf.add_to_collection('losses', weights_wd) return weights
Example #4
Source File: layers.py From photo-editing-tensorflow with MIT License | 6 votes |
def linear(input_, output_size, weights_initializer=initializers.xavier_initializer(), biases_initializer=tf.zeros_initializer, activation_fn=None, trainable=True, name='linear'): shape = input_.get_shape().as_list() if len(shape) > 2: input_ = tf.reshape(input_, [-1, reduce(lambda x, y: x * y, shape[1:])]) shape = input_.get_shape().as_list() with tf.variable_scope(name): w = tf.get_variable('w', [shape[1], output_size], tf.float32, initializer=weights_initializer, trainable=trainable) b = tf.get_variable('b', [output_size], initializer=biases_initializer, trainable=trainable) out = tf.nn.bias_add(tf.matmul(input_, w), b) if activation_fn != None: return activation_fn(out), w, b else: return out, w, b
Example #5
Source File: capsule.py From nlp_research with MIT License | 6 votes |
def _get_weights_wrapper( name, shape, dtype=tf.float32, initializer=initializers.xavier_initializer(), weights_decay_factor=None ): """Wrapper over _get_variable_wrapper() to get weights, with weights decay factor in loss. """ weights = _get_variable_wrapper( name=name, shape=shape, dtype=dtype, initializer=initializer ) if weights_decay_factor is not None and weights_decay_factor > 0.0: weights_wd = tf.multiply( tf.nn.l2_loss(weights), weights_decay_factor, name=name + '/l2loss' ) tf.add_to_collection('losses', weights_wd) return weights
Example #6
Source File: layers.py From deep-rl-tensorflow with MIT License | 6 votes |
def linear(input_, output_size, weights_initializer=initializers.xavier_initializer(), biases_initializer=tf.zeros_initializer, activation_fn=None, trainable=True, name='linear'): shape = input_.get_shape().as_list() if len(shape) > 2: input_ = tf.reshape(input_, [-1, reduce(lambda x, y: x * y, shape[1:])]) shape = input_.get_shape().as_list() with tf.variable_scope(name): w = tf.get_variable('w', [shape[1], output_size], tf.float32, initializer=weights_initializer, trainable=trainable) b = tf.get_variable('b', [output_size], initializer=biases_initializer, trainable=trainable) out = tf.nn.bias_add(tf.matmul(input_, w), b) if activation_fn != None: return activation_fn(out), w, b else: return out, w, b
Example #7
Source File: capsule_utils.py From BERT with Apache License 2.0 | 6 votes |
def _get_weights_wrapper( name, shape, dtype=tf.float32, initializer=initializers.xavier_initializer(), weights_decay_factor=None ): """Wrapper over _get_variable_wrapper() to get weights, with weights decay factor in loss. """ weights = _get_variable_wrapper( name=name, shape=shape, dtype=dtype, initializer=initializer ) if weights_decay_factor is not None and weights_decay_factor > 0.0: weights_wd = tf.multiply( tf.nn.l2_loss(weights), weights_decay_factor, name=name + '/l2loss' ) tf.add_to_collection('losses', weights_wd) return weights
Example #8
Source File: fractal_block.py From FractalNet with MIT License | 5 votes |
def fractal_conv2d(inputs, num_columns, num_outputs, kernel_size, joined=True, stride=1, padding='SAME', # rate=1, activation_fn=nn.relu, normalizer_fn=slim.batch_norm, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=None, biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, is_training=True, trainable=True, scope=None): """Builds a fractal block with slim.conv2d. The fractal will have `num_columns` columns, and have Args: inputs: a 4-D tensor `[batch_size, height, width, channels]`. num_columns: integer, the columns in the fractal. """ locs = locals() fractal_args = ['inputs','num_columns','joined','is_training'] asc_fn = lambda : slim.arg_scope([slim.conv2d], **{arg:val for (arg,val) in locs.items() if arg not in fractal_args}) return fractal_template(inputs, num_columns, slim.conv2d, asc_fn, joined, is_training, reuse, scope)
Example #9
Source File: transfer_semantic.py From instance-segmentation-with-discriminative-loss-tensorflow with MIT License | 5 votes |
def load_enet(sess, checkpoint_dir, input_image, batch_size, num_classes): checkpoint = tf.train.latest_checkpoint(checkpoint_dir) num_initial_blocks = 1 skip_connections = False stage_two_repeat = 2 with slim.arg_scope(ENet_arg_scope()): logits, _ = ENet(input_image, num_classes=12, batch_size=batch_size, is_training=True, reuse=None, num_initial_blocks=num_initial_blocks, stage_two_repeat=stage_two_repeat, skip_connections=skip_connections) variables_to_restore = slim.get_variables_to_restore() saver = tf.train.Saver(variables_to_restore) saver.restore(sess, checkpoint) graph = tf.get_default_graph() last_prelu = graph.get_tensor_by_name('ENet/bottleneck5_1_last_prelu:0') output = slim.conv2d_transpose(last_prelu, num_classes, [2,2], stride=2, weights_initializer=initializers.xavier_initializer(), scope='Semantic/transfer_layer/conv2d_transpose') probabilities = tf.nn.softmax(output, name='Semantic/transfer_layer/logits_to_softmax') with tf.variable_scope('', reuse=True): weight = tf.get_variable('Semantic/transfer_layer/conv2d_transpose/weights') bias = tf.get_variable('Semantic/transfer_layer/conv2d_transpose/biases') sess.run([weight.initializer, bias.initializer]) return output, probabilities
Example #10
Source File: layers.py From photo-editing-tensorflow with MIT License | 5 votes |
def conv2d(x, output_dim, kernel_size, stride, weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.zeros_initializer, activation_fn=tf.nn.relu, data_format='NHWC', padding='VALID', name='conv2d', trainable=True): with tf.variable_scope(name): stride = [1, stride[0], stride[1], 1] kernel_shape = [kernel_size[0], kernel_size[1], x.get_shape()[-1], output_dim] w = tf.get_variable('w', kernel_shape, tf.float32, initializer=weights_initializer, trainable=trainable) conv = tf.nn.conv2d(x, w, stride, padding, data_format=data_format) b = tf.get_variable('b', [output_dim], tf.float32, initializer=biases_initializer, trainable=trainable) out = tf.nn.bias_add(conv, b, data_format) if activation_fn != None: out = activation_fn(out) return out, w, b
Example #11
Source File: layers.py From deep-rl-tensorflow with MIT License | 5 votes |
def conv2d(x, output_dim, kernel_size, stride, weights_initializer=tf.contrib.layers.xavier_initializer(), biases_initializer=tf.zeros_initializer, activation_fn=tf.nn.relu, data_format='NHWC', padding='VALID', name='conv2d', trainable=True): with tf.variable_scope(name): if data_format == 'NCHW': stride = [1, 1, stride[0], stride[1]] kernel_shape = [kernel_size[0], kernel_size[1], x.get_shape()[1], output_dim] elif data_format == 'NHWC': stride = [1, stride[0], stride[1], 1] kernel_shape = [kernel_size[0], kernel_size[1], x.get_shape()[-1], output_dim] w = tf.get_variable('w', kernel_shape, tf.float32, initializer=weights_initializer, trainable=trainable) conv = tf.nn.conv2d(x, w, stride, padding, data_format=data_format) b = tf.get_variable('b', [output_dim], tf.float32, initializer=biases_initializer, trainable=trainable) out = tf.nn.bias_add(conv, b, data_format) if activation_fn != None: out = activation_fn(out) return out, w, b
Example #12
Source File: preact_conv.py From tensorflow-litterbox with Apache License 2.0 | 5 votes |
def preact_conv2d( inputs, num_outputs, kernel_size, stride=1, padding='SAME', activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): """Adds a 2D convolution preceded by batch normalization and activation. """ with variable_scope.variable_scope(scope, 'Conv', values=[inputs], reuse=reuse) as sc: inputs = ops.convert_to_tensor(inputs) dtype = inputs.dtype.base_dtype if normalizer_fn: normalizer_params = normalizer_params or {} inputs = normalizer_fn(inputs, activation_fn=activation_fn, **normalizer_params) kernel_h, kernel_w = utils.two_element_tuple(kernel_size) stride_h, stride_w = utils.two_element_tuple(stride) num_filters_in = utils.last_dimension(inputs.get_shape(), min_rank=4) weights_shape = [kernel_h, kernel_w, num_filters_in, num_outputs] weights_collections = utils.get_variable_collections(variables_collections, 'weights') weights = variables.model_variable('weights', shape=weights_shape, dtype=dtype, initializer=weights_initializer, regularizer=weights_regularizer, collections=weights_collections, trainable=trainable) outputs = nn.conv2d(inputs, weights, [1, stride_h, stride_w, 1], padding=padding) return utils.collect_named_outputs(outputs_collections, sc.name, outputs)
Example #13
Source File: layers.py From STGAN with MIT License | 5 votes |
def flatten_fully_connected(inputs, num_outputs, activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=slim.xavier_initializer(), weights_regularizer=None, biases_initializer=tf.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): with tf.variable_scope(scope, 'flatten_fully_connected', [inputs]): if inputs.shape.ndims > 2: inputs = slim.flatten(inputs) return slim.fully_connected(inputs, num_outputs, activation_fn, normalizer_fn, normalizer_params, weights_initializer, weights_regularizer, biases_initializer, biases_regularizer, reuse, variables_collections, outputs_collections, trainable, scope)
Example #14
Source File: layers.py From STGAN with MIT License | 5 votes |
def flatten_fully_connected_v1(inputs, num_outputs, activation_fn=tf.nn.relu, normalizer_fn=None, normalizer_params=None, weights_initializer=slim.xavier_initializer(), weights_regularizer=None, biases_initializer=tf.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): with tf.variable_scope(scope, 'flatten_fully_connected_v1'): if inputs.shape.ndims > 2: inputs = slim.flatten(inputs) return slim.fully_connected(inputs, num_outputs, activation_fn, normalizer_fn, normalizer_params, weights_initializer, weights_regularizer, biases_initializer, biases_regularizer, reuse, variables_collections, outputs_collections, trainable, scope)
Example #15
Source File: layers.py From STGAN with MIT License | 5 votes |
def flatten_fully_connected_v2(inputs, num_outputs, activation_fn=nn.relu, normalizer_fn=None, normalizer_params=None, weights_normalizer_fn=None, weights_normalizer_params=None, weights_initializer=initializers.xavier_initializer(), weights_regularizer=None, biases_initializer=init_ops.zeros_initializer(), biases_regularizer=None, reuse=None, variables_collections=None, outputs_collections=None, trainable=True, scope=None): with variable_scope.variable_scope(scope, 'flatten_fully_connected_v2'): if inputs.shape.ndims > 2: inputs = layers.flatten(inputs) return fully_connected(inputs=inputs, num_outputs=num_outputs, activation_fn=activation_fn, normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, weights_normalizer_fn=weights_normalizer_fn, weights_normalizer_params=weights_normalizer_params, weights_initializer=weights_initializer, weights_regularizer=weights_regularizer, biases_initializer=biases_initializer, biases_regularizer=biases_regularizer, reuse=reuse, variables_collections=variables_collections, outputs_collections=outputs_collections, trainable=trainable, scope=scope)
Example #16
Source File: bert_ner.py From bert_ner with Apache License 2.0 | 4 votes |
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, seq_length, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) embedding = model.get_sequence_output() embeddings = tf.layers.dropout(embedding, rate=FLAGS.dropout_rate, training=is_training) with tf.variable_scope('Graph', reuse=None, custom_getter=None): # LSTM t = tf.transpose(embeddings, perm=[1, 0, 2]) lstm_cell_fw = tf.contrib.rnn.LSTMBlockFusedCell(128) # 序列标注问题中一般lstm单元个数就是max_seq_length lstm_cell_bw = tf.contrib.rnn.LSTMBlockFusedCell(128) lstm_cell_bw = tf.contrib.rnn.TimeReversedFusedRNN(lstm_cell_bw) output_fw, _ = lstm_cell_fw(t, dtype=tf.float32, sequence_length=seq_length) output_bw, _ = lstm_cell_bw(t, dtype=tf.float32, sequence_length=seq_length) output = tf.concat([output_fw, output_bw], axis=-1) output = tf.transpose(output, perm=[1, 0, 2]) output = tf.layers.dropout(output, rate=0.5, training=is_training) # CRF logits = tf.layers.dense(output, num_labels) crf_params = tf.get_variable("crf", [num_labels, num_labels], dtype=tf.float32) trans = tf.get_variable( "transitions", shape=[num_labels, num_labels], initializer=initializers.xavier_initializer()) pred_ids, trans = tf.contrib.crf.crf_decode(logits, crf_params, seq_length) log_likelihood, _ = tf.contrib.crf.crf_log_likelihood( logits, label_ids, seq_length, crf_params) loss = tf.reduce_mean(-log_likelihood) # if mode == tf.estimator.ModeKeys.EVAL: # return tf.estimator.EstimatorSpec( # mode, loss=loss, eval_metric_ops=metrics) # elif mode == tf.estimator.ModeKeys.TRAIN: return loss, logits, trans, pred_ids
Example #17
Source File: bi_lstm.py From FoolNLTK with Apache License 2.0 | 4 votes |
def __init__(self, config, embeddings): self.config = config self.lstm_dim = config["lstm_dim"] self.num_chars = config["num_chars"] self.num_tags = config["num_tags"] self.char_dim = config["char_dim"] self.lr = config["lr"] self.char_embeding = tf.get_variable(name="char_embeding", initializer=embeddings) self.global_step = tf.Variable(0, trainable=False) self.initializer = initializers.xavier_initializer() self.char_inputs = tf.placeholder(dtype=tf.int32, shape=[None, None], name="char_inputs") self.targets = tf.placeholder(dtype=tf.int32, shape=[None, None], name="targets") self.dropout = tf.placeholder(dtype=tf.float32, name="dropout") self.lengths = tf.placeholder(dtype=tf.int32, shape=[None, ], name="lengths") # self.middle_dropout_keep_prob = tf.placeholder_with_default(1.0, [], name="middle_dropout_keep_prob") # self.hidden_dropout_keep_prob = tf.placeholder_with_default(1.0, [], name="hidden_dropout_keep_prob") self.input_dropout_keep_prob = tf.placeholder_with_default(config["input_dropout_keep"], [], name="input_dropout_keep_prob") self.batch_size = tf.shape(self.char_inputs)[0] self.num_steps = tf.shape(self.char_inputs)[-1] # forward embedding = self.embedding_layer(self.char_inputs) lstm_inputs = tf.nn.dropout(embedding, self.input_dropout_keep_prob) ## bi-directional lstm layer lstm_outputs = self.bilstm_layer(lstm_inputs) ## logits for tags self.project_layer(lstm_outputs) ## loss of the model self.loss = self.loss_layer(self.logits, self.lengths) with tf.variable_scope("optimizer"): optimizer = self.config["optimizer"] if optimizer == "sgd": self.opt = tf.train.GradientDescentOptimizer(self.lr) elif optimizer == "adam": self.opt = tf.train.AdamOptimizer(self.lr) elif optimizer == "adgrad": self.opt = tf.train.AdagradOptimizer(self.lr) else: raise KeyError grads_vars = self.opt.compute_gradients(self.loss) capped_grads_vars = [[tf.clip_by_value(g, -self.config["clip"], self.config["clip"]), v] for g, v in grads_vars] self.train_op = self.opt.apply_gradients(capped_grads_vars, self.global_step)
Example #18
Source File: model.py From tensorflow_nlp with Apache License 2.0 | 4 votes |
def IDCNN_layer(self, model_inputs, name=None): model_inputs = tf.expand_dims(model_inputs, 1) reuse = False if self.dropout == 1.0: reuse = True with tf.variable_scope("idcnn" if not name else name): shape = [1, self.filter_width, self.embedding_dim, self.num_filter] filter_weights = tf.get_variable( "idcnn_filter", shape=[1, self.filter_width, self.embedding_dim, self.num_filter], initializer=self.initializer) """ shape of input = [batch, in_height, in_width, in_channels] shape of filter = [filter_height, filter_width, in_channels, out_channels] """ layerInput = tf.nn.conv2d(model_inputs, filter_weights, strides=[1, 1, 1, 1], padding="SAME", name="init_layer") finalOutFromLayers = [] totalWidthForLastDim = 0 for j in range(self.repeat_times): for i in range(len(self.layers)): dilation = self.layers[i]['dilation'] isLast = True if i == (len(self.layers) - 1) else False with tf.variable_scope("atrous-conv-layer-%d" % i, reuse=True if (reuse or j > 0) else False): w = tf.get_variable( "filterW", shape=[1, self.filter_width, self.num_filter, self.num_filter], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable("filterB", shape=[self.num_filter]) conv = tf.nn.atrous_conv2d(layerInput, w, rate=dilation, padding="SAME") conv = tf.nn.bias_add(conv, b) conv = tf.nn.relu(conv) if isLast: finalOutFromLayers.append(conv) totalWidthForLastDim += self.num_filter layerInput = conv finalOut = tf.concat(axis=3, values=finalOutFromLayers) keepProb = 1.0 if reuse else 0.5 finalOut = tf.nn.dropout(finalOut, keepProb) finalOut = tf.squeeze(finalOut, [1]) finalOut = tf.reshape(finalOut, [-1, totalWidthForLastDim]) self.cnn_output_width = totalWidthForLastDim return finalOut