Python worker.Worker() Examples
The following are 12
code examples of worker.Worker().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
worker
, or try the search function
.
Example #1
Source File: test_functional_containers_crawler.py From agentless-system-crawler with Apache License 2.0 | 6 votes |
def testCrawlContainerKafka2(self): emitters = EmittersManager(urls=['kafka://localhost:9092/test']) crawler = ContainersCrawler( features=['os', 'process'], user_list=self.container['Id']) worker = Worker(emitters=emitters, frequency=-1, crawler=crawler) worker.iterate() kafka = pykafka.KafkaClient(hosts='localhost:9092') topic = kafka.topics['test'] consumer = topic.get_simple_consumer() message = consumer.consume() assert '"cmd":"/bin/sleep 60"' in message.value for i in range(1, 5): worker.iterate() message = consumer.consume() assert '"cmd":"/bin/sleep 60"' in message.value
Example #2
Source File: master.py From ppo-lstm-parallel with MIT License | 5 votes |
def make_worker(env_producer, i, q, w_in_queue): return Worker(env_producer, i, q, w_in_queue)
Example #3
Source File: mountaincar_a3c.py From reinforcement_learning with MIT License | 5 votes |
def main(): '''Example of A3C running on MountainCar environment''' tf.reset_default_graph() history = [] with tf.device('/{}:0'.format(DEVICE)): sess = tf.Session() global_model = ac_net.AC_Net( STATE_SIZE, ACTION_SIZE, LEARNING_RATE, 'global', n_h1=N_H1, n_h2=N_H2) workers = [] for i in xrange(NUM_WORKERS): env = gym.make(ENV_NAME) env._max_episode_steps = MAX_STEPS workers.append(worker.Worker(env, state_size=STATE_SIZE, action_size=ACTION_SIZE, worker_name='worker_{}'.format(i), global_name='global', lr=LEARNING_RATE, gamma=GAMMA, t_max=T_MAX, sess=sess, history=history, n_h1=N_H1, n_h2=N_H2, logdir=LOG_DIR)) sess.run(tf.global_variables_initializer()) for workeri in workers: worker_work = lambda: workeri.work(NUM_EPISODES) thread = threading.Thread(target=worker_work) thread.start()
Example #4
Source File: cartpole_a3c.py From reinforcement_learning with MIT License | 5 votes |
def main(): '''Example of A3C running on Cartpole environment''' tf.reset_default_graph() history = [] with tf.device('/{}:0'.format(DEVICE)): sess = tf.Session() global_model = ac_net.AC_Net( STATE_SIZE, ACTION_SIZE, LEARNING_RATE, 'global', n_h1=N_H1, n_h2=N_H2) workers = [] for i in xrange(NUM_WORKERS): env = gym.make('CartPole-v0') env._max_episode_steps = 200 workers.append(worker.Worker(env, state_size=STATE_SIZE, action_size=ACTION_SIZE, worker_name='worker_{}'.format(i), global_name='global', lr=LEARNING_RATE, gamma=GAMMA, t_max=T_MAX, sess=sess, history=history, n_h1=N_H1, n_h2=N_H2, logdir=LOG_DIR)) sess.run(tf.global_variables_initializer()) for workeri in workers: worker_work = lambda: workeri.work(NUM_EPISODES) thread = threading.Thread(target=worker_work) thread.start()
Example #5
Source File: acrobot_a3c.py From reinforcement_learning with MIT License | 5 votes |
def main(): '''Example of A3C running on Acrobot environment''' tf.reset_default_graph() history = [] with tf.device('/{}:0'.format(DEVICE)): sess = tf.Session() global_model = ac_net.AC_Net( STATE_SIZE, ACTION_SIZE, LEARNING_RATE, 'global', n_h1=N_H1, n_h2=N_H2) workers = [] for i in xrange(NUM_WORKERS): env = gym.make('Acrobot-v1') env._max_episode_steps = 3000 workers.append(worker.Worker(env, state_size=STATE_SIZE, action_size=ACTION_SIZE, worker_name='worker_{}'.format(i), global_name='global', lr=LEARNING_RATE, gamma=GAMMA, t_max=T_MAX, sess=sess, history=history, n_h1=N_H1, n_h2=N_H2, logdir=LOG_DIR)) sess.run(tf.global_variables_initializer()) for workeri in workers: worker_work = lambda: workeri.work(NUM_EPISODES) thread = threading.Thread(target=worker_work) thread.start()
Example #6
Source File: test_functional_logs_linker.py From agentless-system-crawler with Apache License 2.0 | 5 votes |
def testLinkUnlinkContainer(self): docker_log = os.path.join(HOST_LOG_BASEDIR, self.host_namespace, self.container_name, 'docker.log') messages_log = os.path.join(HOST_LOG_BASEDIR, self.host_namespace, self.container_name, 'var/log/messages') crawler = DockerContainersLogsLinker( environment='cloudsight', user_list='ALL', host_namespace=self.host_namespace) worker = Worker(crawler=crawler) self.startContainer() worker.iterate() with open(docker_log, 'r') as log: assert 'hi' in log.read() with open(messages_log, 'r') as log: assert 'hi' in log.read() assert os.path.exists(docker_log) assert os.path.exists(messages_log) assert os.path.islink(docker_log) assert os.path.islink(messages_log) self.removeContainer() worker.iterate() assert not os.path.exists(docker_log) assert not os.path.exists(messages_log) assert not os.path.islink(docker_log) assert not os.path.islink(messages_log) self.startContainer() worker.iterate() assert os.path.exists(docker_log) with open(docker_log, 'r') as log: assert 'hi' in log.read() with open(messages_log, 'r') as log: assert 'hi' in log.read() assert os.path.exists(messages_log) assert os.path.islink(docker_log) assert os.path.islink(messages_log) self.removeContainer()
Example #7
Source File: bilibili_member_crawler.py From bilibili_member_crawler with MIT License | 5 votes |
def start(cls): cls.init() # 开启任务分发线程 Distributor(FETCH_MID_FROM, FETCH_MID_TO + 1).start() # 开启爬虫线程 for i in range(0, THREADS_NUM): Worker(f'Worker-{i}').start()
Example #8
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 5 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n print('state size:', num_inputs) print('action size:', num_actions) online_net = QNet(num_inputs, num_actions) target_net = QNet(num_inputs, num_actions) target_net.load_state_dict(online_net.state_dict()) online_net.share_memory() target_net.share_memory() optimizer = SharedAdam(online_net.parameters(), lr=lr) global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue() writer = SummaryWriter('logs') online_net.to(device) target_net.to(device) online_net.train() target_net.train() workers = [Worker(online_net, target_net, optimizer, global_ep, global_ep_r, res_queue, i) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] while True: r = res_queue.get() if r is not None: res.append(r) [ep, ep_r, loss] = r writer.add_scalar('log/score', float(ep_r), ep) writer.add_scalar('log/loss', float(loss), ep) else: break [w.join() for w in workers]
Example #9
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 5 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n env.close() global_model = Model(num_inputs, num_actions) global_average_model = Model(num_inputs, num_actions) global_model.share_memory() global_average_model.share_memory() global_optimizer = SharedAdam(global_model.parameters(), lr=lr) global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue() writer = SummaryWriter('logs') n = mp.cpu_count() workers = [Worker(global_model, global_average_model, global_optimizer, global_ep, global_ep_r, res_queue, i) for i in range(n)] [w.start() for w in workers] res = [] while True: r = res_queue.get() if r is not None: res.append(r) [ep, ep_r, loss] = r writer.add_scalar('log/score', float(ep_r), ep) writer.add_scalar('log/loss', float(loss), ep) else: break [w.join() for w in workers]
Example #10
Source File: train.py From Reinforcement-Learning-Pytorch-Cartpole with MIT License | 5 votes |
def main(): env = gym.make(env_name) env.seed(500) torch.manual_seed(500) num_inputs = env.observation_space.shape[0] num_actions = env.action_space.n global_model = Model(num_inputs, num_actions) global_model.share_memory() global_optimizer = SharedAdam(global_model.parameters(), lr=lr) global_ep, global_ep_r, res_queue = mp.Value('i', 0), mp.Value('d', 0.), mp.Queue() writer = SummaryWriter('logs') workers = [Worker(global_model, global_optimizer, global_ep, global_ep_r, res_queue, i) for i in range(mp.cpu_count())] [w.start() for w in workers] res = [] while True: r = res_queue.get() if r is not None: res.append(r) [ep, ep_r, loss] = r writer.add_scalar('log/score', float(ep_r), ep) writer.add_scalar('log/loss', float(loss), ep) else: break [w.join() for w in workers]
Example #11
Source File: train_A3C.py From reinforce_py with MIT License | 4 votes |
def main(args): if args.save_path is not None and not os.path.exists(args.save_path): os.makedirs(args.save_path) summary_writer = tf.summary.FileWriter(os.path.join(args.save_path, 'log')) global_steps_counter = itertools.count() # thread-safe global_net = Net(S_DIM, A_DIM, 'global', args) num_workers = args.threads workers = [] # create workers for i in range(1, num_workers + 1): worker_summary_writer = summary_writer if i == 0 else None worker = Worker(i, make_env(args), global_steps_counter, worker_summary_writer, args) workers.append(worker) saver = tf.train.Saver(max_to_keep=5) with tf.Session() as sess: coord = tf.train.Coordinator() if args.model_path is not None: print('Loading model...\n') ckpt = tf.train.get_checkpoint_state(args.model_path) saver.restore(sess, ckpt.model_checkpoint_path) else: print('Initializing a new model...\n') sess.run(tf.global_variables_initializer()) print_params_nums() # Start work process for each worker in a separated thread worker_threads = [] for worker in workers: t = threading.Thread(target=lambda: worker.run(sess, coord, saver)) t.start() time.sleep(0.5) worker_threads.append(t) if args.eval_every > 0: evaluator = Evaluate( global_net, summary_writer, global_steps_counter, args) evaluate_thread = threading.Thread( target=lambda: evaluator.run(sess, coord)) evaluate_thread.start() coord.join(worker_threads)
Example #12
Source File: train_A3C.py From reinforce_py with MIT License | 4 votes |
def main(args): if args.save_path is not None and not os.path.exists(args.save_path): os.makedirs(args.save_path) tf.reset_default_graph() global_ep = tf.Variable( 0, dtype=tf.int32, name='global_ep', trainable=False) env = Doom(visiable=False) Net(env.state_dim, env.action_dim, 'global', None) num_workers = args.parallel workers = [] # create workers for i in range(num_workers): w = Worker(i, Doom(), global_ep, args) workers.append(w) print('%d workers in total.\n' % num_workers) saver = tf.train.Saver(max_to_keep=3) with tf.Session() as sess: coord = tf.train.Coordinator() if args.model_path is not None: print('Loading model...') ckpt = tf.train.get_checkpoint_state(args.model_path) saver.restore(sess, ckpt.model_checkpoint_path) else: print('Initializing a new model...') sess.run(tf.global_variables_initializer()) print_net_params_number() # Start work process for each worker in a separated thread worker_threads = [] for w in workers: run_fn = lambda: w.run(sess, coord, saver) t = threading.Thread(target=run_fn) t.start() time.sleep(0.5) worker_threads.append(t) coord.join(worker_threads)