Python cv2.CV_8UC1 Examples
The following are 5
code examples of cv2.CV_8UC1().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: BloodVessels.py From Diabetic-Retinopathy-Feature-Extraction-using-Fundus-Images with GNU General Public License v3.0 | 5 votes |
def applyKirschFilter(self): gray = self.curImg if gray.ndim > 2: raise Exception("illegal argument: input must be a single channel image (gray)") kernelG1 = np.array([[ 5, 5, 5], [-3, 0, -3], [-3, -3, -3]], dtype=np.float32) kernelG2 = np.array([[ 5, 5, -3], [ 5, 0, -3], [-3, -3, -3]], dtype=np.float32) kernelG3 = np.array([[ 5, -3, -3], [ 5, 0, -3], [ 5, -3, -3]], dtype=np.float32) kernelG4 = np.array([[-3, -3, -3], [ 5, 0, -3], [ 5, 5, -3]], dtype=np.float32) kernelG5 = np.array([[-3, -3, -3], [-3, 0, -3], [ 5, 5, 5]], dtype=np.float32) kernelG6 = np.array([[-3, -3, -3], [-3, 0, 5], [-3, 5, 5]], dtype=np.float32) kernelG7 = np.array([[-3, -3, 5], [-3, 0, 5], [-3, -3, 5]], dtype=np.float32) kernelG8 = np.array([[-3, 5, 5], [-3, 0, 5], [-3, -3, -3]], dtype=np.float32) g1 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG1), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g2 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG2), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g3 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG3), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g4 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG4), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g5 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG5), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g6 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG6), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g7 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG7), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) g8 = cv2.normalize(cv2.filter2D(gray, cv2.CV_32F, kernelG8), None, 0, 255, cv2.NORM_MINMAX, cv2.CV_8UC1) magn = cv2.max(g1, cv2.max(g2, cv2.max(g3, cv2.max(g4, cv2.max(g5, cv2.max(g6, cv2.max(g7, g8))))))) self.curImg = magn
Example #2
Source File: img_tools.py From crossgap_il_rl with GNU General Public License v2.0 | 5 votes |
def float_img_to_display(_img): img = _img max_value = 1000 rows, cols = img.shape for i in range(rows): for j in range(cols): if (img[i, j] > max_value): img[i, j] = max_value dist1 = cv2.convertScaleAbs(img) dist2 = cv2.normalize(dist1, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1) return dist1 # return dist2
Example #3
Source File: img_tools.py From crossgap_il_rl with GNU General Public License v2.0 | 5 votes |
def float_img_to_display(_img): img = _img max_value = 1000 rows, cols = img.shape for i in range(rows): for j in range(cols): if (img[i, j] > max_value): img[i, j] = max_value dist1 = cv2.convertScaleAbs(img) dist2 = cv2.normalize(dist1, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1) return dist1 # return dist2
Example #4
Source File: img_tools.py From crossgap_il_rl with GNU General Public License v2.0 | 5 votes |
def float_img_to_display(_img): img = _img max_value = 1000 rows, cols = img.shape for i in range(rows): for j in range(cols): if (img[i, j] > max_value): img[i, j] = max_value dist1 = cv2.convertScaleAbs(img) dist2 = cv2.normalize(dist1, None, 255, 0, cv2.NORM_MINMAX, cv2.CV_8UC1) return dist1 # return dist2
Example #5
Source File: stereo_matcher_app.py From cvcalib with Apache License 2.0 | 5 votes |
def process_output(self, disparity): cv8uc = cv2.normalize(disparity, None, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8UC1) if self.args.preview: cv2.imshow("disparity", cv8uc) cv2.waitKey(0) cv2.imwrite(os.path.join(self.args.folder, self.args.output), cv8uc)