Python cv2.inpaint() Examples
The following are 18
code examples of cv2.inpaint().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cv2
, or try the search function
.
Example #1
Source File: imgproc.py From graph_distillation with Apache License 2.0 | 6 votes |
def inpaint(img, threshold=1): h, w = img.shape[:2] if len(img.shape) == 3: # RGB mask = np.all(img == 0, axis=2).astype(np.uint8) img = cv2.inpaint(img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA) else: # depth mask = np.where(img > threshold) xx, yy = np.meshgrid(np.arange(w), np.arange(h)) xym = np.vstack((np.ravel(xx[mask]), np.ravel(yy[mask]))).T img = np.ravel(img[mask]) interp = interpolate.NearestNDInterpolator(xym, img) img = interp(np.ravel(xx), np.ravel(yy)).reshape(xx.shape) return img
Example #2
Source File: demo_segmentation.py From Text_Segmentation_Image_Inpainting with GNU General Public License v3.0 | 6 votes |
def process(eval_img, device='cpu'): (img, origin, unpadder), file_name = eval_img with torch.no_grad(): out = model(img.to(device)) prob = F.sigmoid(out) mask = prob > 0.5 mask = torch.nn.MaxPool2d(kernel_size=(3, 3), padding=(1, 1), stride=1)(mask.float()).byte() mask = unpadder(mask) mask = mask.float().cpu() save_image(mask, file_name + ' _mask.jpg') origin_np = np.array(to_pil_image(origin[0])) mask_np = to_pil_image(mask[0]).convert("L") mask_np = np.array(mask_np, dtype='uint8') mask_np = draw_bounding_box(origin_np, mask_np, 500) mask_ = Image.fromarray(mask_np) mask_.save(file_name + "_contour.jpg") # ret, mask_np = cv2.threshold(mask_np, 127, 255, 0) # dst = cv2.inpaint(origin_np, mask_np, 1, cv2.INPAINT_NS) # out = Image.fromarray(dst) # out.save(file_name + ' _box.jpg')
Example #3
Source File: image.py From ggcnn with BSD 3-Clause "New" or "Revised" License | 6 votes |
def inpaint(self, missing_value=0): """ Inpaint missing values in depth image. :param missing_value: Value to fill in teh depth image. """ # cv2 inpainting doesn't handle the border properly # https://stackoverflow.com/questions/25974033/inpainting-depth-map-still-a-black-image-border self.img = cv2.copyMakeBorder(self.img, 1, 1, 1, 1, cv2.BORDER_DEFAULT) mask = (self.img == missing_value).astype(np.uint8) # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. scale = np.abs(self.img).max() self.img = self.img.astype(np.float32) / scale # Has to be float32, 64 not supported. self.img = cv2.inpaint(self.img, mask, 1, cv2.INPAINT_NS) # Back to original size and value range. self.img = self.img[1:-1, 1:-1] self.img = self.img * scale
Example #4
Source File: transforms.py From albumentations with MIT License | 6 votes |
def __init__(self, max_objects=1, image_fill_value=0, mask_fill_value=0, always_apply=False, p=0.5): """ Args: max_objects: Maximum number of labels that can be zeroed out. Can be tuple, in this case it's [min, max] image_fill_value: Fill value to use when filling image. Can be 'inpaint' to apply inpaining (works only for 3-chahnel images) mask_fill_value: Fill value to use when filling mask. Targets: image, mask Image types: uint8, float32 """ super(MaskDropout, self).__init__(always_apply, p) self.max_objects = to_tuple(max_objects, 1) self.image_fill_value = image_fill_value self.mask_fill_value = mask_fill_value
Example #5
Source File: WatermarkRemover.py From nowatermark with MIT License | 6 votes |
def remove_watermark_raw(self, img, watermark_template_gray_img, watermark_template_mask_img): """ 去除图片中的水印 :param img: 待去除水印图片位图 :param watermark_template_gray_img: 水印模板的灰度图片位图,用于确定水印位置 :param watermark_template_mask_img: 水印模板的掩码图片位图,用于修复原始图片 :return: 去除水印后的图片位图 """ # 寻找水印位置 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) x1, y1, x2, y2 = self.find_watermark_from_gray(img_gray, watermark_template_gray_img) # 制作原图的水印位置遮板 mask = np.zeros(img.shape, np.uint8) # watermark_template_mask_img = cv2.cvtColor(watermark_template_gray_img, cv2.COLOR_GRAY2BGR) # mask[y1:y1 + self.watermark_template_h, x1:x1 + self.watermark_template_w] = watermark_template_mask_img mask[y1:y2, x1:x2] = watermark_template_mask_img mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY) # 用遮板进行图片修复,使用 TELEA 算法 dst = cv2.inpaint(img, mask, 5, cv2.INPAINT_TELEA) # cv2.imwrite('dst.jpg', dst) return dst
Example #6
Source File: measure_utils.py From ambient-gan with MIT License | 6 votes |
def get_inpaint_func_tv(): def inpaint_func(image, mask): """Total variation inpainting""" inpainted = np.zeros_like(image) for c in range(image.shape[2]): image_c = image[:, :, c] mask_c = mask[:, :, c] if np.min(mask_c) > 0: # if mask is all ones, no need to inpaint inpainted[:, :, c] = image_c else: h, w = image_c.shape inpainted_c_var = cvxpy.Variable(h, w) obj = cvxpy.Minimize(cvxpy.tv(inpainted_c_var)) constraints = [cvxpy.mul_elemwise(mask_c, inpainted_c_var) == cvxpy.mul_elemwise(mask_c, image_c)] prob = cvxpy.Problem(obj, constraints) # prob.solve(solver=cvxpy.SCS, max_iters=100, eps=1e-2) # scs solver prob.solve() # default solver inpainted[:, :, c] = inpainted_c_var.value return inpainted return inpaint_func
Example #7
Source File: utils.py From casme with BSD 3-Clause "New" or "Revised" License | 5 votes |
def inpaint(mask, masked_image): l = [] for i in range(mask.size(0)): permuted_image = permute_image(masked_image[i], mul255=True) m = mask[i].squeeze().byte().numpy() inpainted_numpy = cv2.inpaint(permuted_image, m, 3, cv2.INPAINT_TELEA) #cv2.INPAINT_NS l.append(transforms.ToTensor()(inpainted_numpy).unsqueeze(0)) inpainted_tensor = torch.cat(l, 0) return inpainted_tensor
Example #8
Source File: transforms.py From albumentations with MIT License | 5 votes |
def apply(self, img, dropout_mask=None, **params): if dropout_mask is None: return img if self.image_fill_value == "inpaint": dropout_mask = dropout_mask.astype(np.uint8) _, _, w, h = cv2.boundingRect(dropout_mask) radius = min(3, max(w, h) // 2) img = cv2.inpaint(img, dropout_mask, radius, cv2.INPAINT_NS) else: img = img.copy() img[dropout_mask] = self.image_fill_value return img
Example #9
Source File: image.py From perception with Apache License 2.0 | 5 votes |
def inpaint(self, win_size=3, rescale_factor=1.0): """ Fills in the zero pixels in the image. Parameters ---------- win_size : int size of window to use for inpainting rescale_factor : float amount to rescale the image for inpainting, smaller numbers increase speed Returns ------- :obj:`ColorImage` color image with zero pixels filled in """ # get original shape orig_shape = (self.height, self.width) # resize the image resized_data = self.resize(rescale_factor, interp='nearest').data # inpaint smaller image mask = 1 * (np.sum(resized_data, axis=2) == 0) inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8), win_size, cv2.INPAINT_TELEA) inpainted_im = ColorImage(inpainted_data, frame=self.frame) # fill in zero pixels with inpainted and resized image filled_data = inpainted_im.resize( orig_shape, interp='bilinear').data new_data = self.data new_data[self.data == 0] = filled_data[self.data == 0] return ColorImage(new_data, frame=self.frame)
Example #10
Source File: RealWorld.py From Monocular-Obstacle-Avoidance with BSD 2-Clause "Simplified" License | 5 votes |
def GetDepthImageObservation(self): # ros image to cv2 image try: cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1") except Exception as e: raise e # try: # cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8") # except Exception as e: # raise e cv_img = np.array(cv_img, dtype=np.float32) cv_img[np.isnan(cv_img)] = 0. # cv_img/=(10./255.) cv_img/=(10000./255.) # print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img) # cv_img[cv_img > 5.] = -1. # cv_img[cv_img < 0.4] = 0. # inpainting mask = copy.deepcopy(cv_img) mask[mask == 0.] = 1. mask[mask != 1.] = 0. # print 'mask sum:', np.sum(mask) mask = np.uint8(mask) cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA) cv_img = np.array(cv_img, dtype=np.float32) # cv_img*=(10./255.) cv_img*=(10./255.) # resize dim = (self.depth_image_size[0], self.depth_image_size[1]) cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA) # cv2 image to ros image and publish try: resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough") except Exception as e: raise e self.resized_depth_img.publish(resized_img) return(cv_img/5.)
Example #11
Source File: ImageRestoration.py From Finger-Detection-and-Tracking with BSD 2-Clause "Simplified" License | 5 votes |
def main(): image = cv2.imread("../data/Damaged Image.tiff", 1) mask_image = cv2.imread("../data/Mask.tiff", 0) telea_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_TELEA) ns_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_NS) cv2.imshow("Orignal Image", image) cv2.imshow("Mask Image", mask_image) cv2.imshow("TELEA Restored Image", telea_image) cv2.imshow("NS Restored Image", ns_image) cv2.waitKey(0) cv2.destroyAllWindows()
Example #12
Source File: measure_utils.py From ambient-gan with MIT License | 5 votes |
def get_inpaint_func_opencv(hparams, inpaint_type): x_min = hparams.x_min x_max = hparams.x_max def inpaint_func(image, mask): mask = np.prod(mask, axis=2, keepdims=True) unknown = (1-mask).astype(np.uint8) image = 255 * (image - x_min) / (x_max - x_min) image = image.astype(np.uint8) inpainted = cv2.inpaint(image, unknown, 3, inpaint_type) inpainted = inpainted.astype(np.float32) inpainted = inpainted / 255.0 * (x_max - x_min) + x_min inpainted = np.reshape(inpainted, image.shape) return inpainted return inpaint_func
Example #13
Source File: ggcnn_torch.py From mvp_grasp with BSD 3-Clause "New" or "Revised" License | 5 votes |
def process_depth_image(depth, crop_size, out_size=300, return_mask=False, crop_y_offset=0): imh, imw = depth.shape with TimeIt('1'): # Crop. depth_crop = depth[(imh - crop_size) // 2 - crop_y_offset:(imh - crop_size) // 2 + crop_size - crop_y_offset, (imw - crop_size) // 2:(imw - crop_size) // 2 + crop_size] # depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) # Inpaint # OpenCV inpainting does weird things at the border. with TimeIt('2'): depth_crop = cv2.copyMakeBorder(depth_crop, 1, 1, 1, 1, cv2.BORDER_DEFAULT) depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) with TimeIt('3'): depth_crop[depth_nan_mask==1] = 0 with TimeIt('4'): # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. depth_scale = np.abs(depth_crop).max() depth_crop = depth_crop.astype(np.float32) / depth_scale # Has to be float32, 64 not supported. with TimeIt('Inpainting'): depth_crop = cv2.inpaint(depth_crop, depth_nan_mask, 1, cv2.INPAINT_NS) # Back to original size and value range. depth_crop = depth_crop[1:-1, 1:-1] depth_crop = depth_crop * depth_scale with TimeIt('5'): # Resize depth_crop = cv2.resize(depth_crop, (out_size, out_size), cv2.INTER_AREA) if return_mask: with TimeIt('6'): depth_nan_mask = depth_nan_mask[1:-1, 1:-1] depth_nan_mask = cv2.resize(depth_nan_mask, (out_size, out_size), cv2.INTER_NEAREST) return depth_crop, depth_nan_mask else: return depth_crop
Example #14
Source File: GazeboWorld.py From Monocular-Obstacle-Avoidance with BSD 2-Clause "Simplified" License | 4 votes |
def GetDepthImageObservation(self): # ros image to cv2 image try: cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1") except Exception as e: raise e try: cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8") except Exception as e: raise e cv_img = np.array(cv_img, dtype=np.float32) # resize dim = (self.depth_image_size[0], self.depth_image_size[1]) cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA) cv_img[np.isnan(cv_img)] = 0. cv_img[cv_img < 0.4] = 0. cv_img/=(10./255.) # cv_img/=(10000./255.) # print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img) # cv_img[cv_img > 5.] = -1. # # inpainting # mask = copy.deepcopy(cv_img) # mask[mask == 0.] = 1. # mask[mask != 1.] = 0. # mask = np.uint8(mask) # cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA) # # guassian noise # gauss = np.random.normal(0., 0.5, dim) # gauss = gauss.reshape(dim[1], dim[0]) # cv_img = np.array(cv_img, dtype=np.float32) # cv_img = cv_img + gauss # cv_img[cv_img<0.00001] = 0. # # smoothing # kernel = np.ones((4,4),np.float32)/16 # cv_img = cv2.filter2D(cv_img,-1,kernel) cv_img = np.array(cv_img, dtype=np.float32) cv_img*=(10./255.) # cv2 image to ros image and publish try: resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough") except Exception as e: raise e self.resized_depth_img.publish(resized_img) return(cv_img/5.)
Example #15
Source File: ggcnn.py From mvp_grasp with BSD 3-Clause "New" or "Revised" License | 4 votes |
def process_depth_image(depth, crop_size, out_size=300, return_mask=False, crop_y_offset=0): imh, imw = depth.shape with TimeIt('Process Depth Image'): with TimeIt('Crop'): # Crop. depth_crop = depth[(imh - crop_size) // 2 - crop_y_offset:(imh - crop_size) // 2 + crop_size - crop_y_offset, (imw - crop_size) // 2:(imw - crop_size) // 2 + crop_size] # Inpaint # OpenCV inpainting does weird things at the border. with TimeIt('Inpainting_Processing'): depth_crop = cv2.copyMakeBorder(depth_crop, 1, 1, 1, 1, cv2.BORDER_DEFAULT) depth_nan_mask = np.isnan(depth_crop).astype(np.uint8) kernel = np.ones((3, 3),np.uint8) depth_nan_mask = cv2.dilate(depth_nan_mask, kernel, iterations=1) depth_crop[depth_nan_mask==1] = 0 # Scale to keep as float, but has to be in bounds -1:1 to keep opencv happy. depth_scale = np.abs(depth_crop).max() depth_crop = depth_crop.astype(np.float32) / depth_scale # Has to be float32, 64 not supported. with TimeIt('Inpainting'): depth_crop = cv2.inpaint(depth_crop, depth_nan_mask, 1, cv2.INPAINT_NS) # Back to original size and value range. depth_crop = depth_crop[1:-1, 1:-1] depth_crop = depth_crop * depth_scale with TimeIt('Resizing'): # Resize depth_crop = cv2.resize(depth_crop, (out_size, out_size), cv2.INTER_AREA) if return_mask: with TimeIt('Return Mask'): depth_nan_mask = depth_nan_mask[1:-1, 1:-1] depth_nan_mask = cv2.resize(depth_nan_mask, (out_size, out_size), cv2.INTER_NEAREST) return depth_crop, depth_nan_mask else: return depth_crop
Example #16
Source File: image.py From perception with Apache License 2.0 | 4 votes |
def inpaint(self, rescale_factor=1.0): """ Fills in the zero pixels in the image. Parameters ---------- rescale_factor : float amount to rescale the image for inpainting, smaller numbers increase speed Returns ------- :obj:`DepthImage` depth image with zero pixels filled in """ # get original shape orig_shape = (self.height, self.width) # form inpaint kernel inpaint_kernel = np.array([[1, 1, 1], [1, 0, 1], [1, 1, 1]]) # resize the image resized_data = self.resize(rescale_factor, interp='nearest').data # inpaint the smaller image cur_data = resized_data.copy() zeros = (cur_data == 0) while np.any(zeros): neighbors = ssg.convolve2d((cur_data != 0), inpaint_kernel, mode='same', boundary='symm') avg_depth = ssg.convolve2d(cur_data, inpaint_kernel, mode='same', boundary='symm') avg_depth[neighbors > 0] = avg_depth[neighbors > 0] / \ neighbors[neighbors > 0] avg_depth[neighbors == 0] = 0 avg_depth[resized_data > 0] = resized_data[resized_data > 0] cur_data = avg_depth zeros = (cur_data == 0) # fill in zero pixels with inpainted and resized image inpainted_im = DepthImage(cur_data, frame=self.frame) filled_data = inpainted_im.resize( orig_shape, interp='bilinear').data new_data = np.copy(self.data) new_data[self.data == 0] = filled_data[self.data == 0] return DepthImage(new_data, frame=self.frame)
Example #17
Source File: utils.py From GLCIC-PyTorch with MIT License | 4 votes |
def poisson_blend(input, output, mask): """ * inputs: - input (torch.Tensor, required) Input tensor of Completion Network, whose shape = (N, 3, H, W). - output (torch.Tensor, required) Output tensor of Completion Network, whose shape = (N, 3, H, W). - mask (torch.Tensor, required) Input mask tensor of Completion Network, whose shape = (N, 1, H, W). * returns: Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method. """ input = input.clone().cpu() output = output.clone().cpu() mask = mask.clone().cpu() mask = torch.cat((mask, mask, mask), dim=1) # convert to 3-channel format num_samples = input.shape[0] ret = [] for i in range(num_samples): dstimg = transforms.functional.to_pil_image(input[i]) dstimg = np.array(dstimg)[:, :, [2, 1, 0]] srcimg = transforms.functional.to_pil_image(output[i]) srcimg = np.array(srcimg)[:, :, [2, 1, 0]] msk = transforms.functional.to_pil_image(mask[i]) msk = np.array(msk)[:, :, [2, 1, 0]] # compute mask's center xs, ys = [], [] for j in range(msk.shape[0]): for k in range(msk.shape[1]): if msk[j, k, 0] == 255: ys.append(j) xs.append(k) xmin, xmax = min(xs), max(xs) ymin, ymax = min(ys), max(ys) center = ((xmax + xmin) // 2, (ymax + ymin) // 2) dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA) out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE) out = out[:, :, [2, 1, 0]] out = transforms.functional.to_tensor(out) out = torch.unsqueeze(out, dim=0) ret.append(out) ret = torch.cat(ret, dim=0) return ret
Example #18
Source File: common_util.py From Pix2Pose with MIT License | 4 votes |
def get_normal(depth_refine,fx=-1,fy=-1,cx=-1,cy=-1,bbox=np.array([0]),refine=True): ''' fast normal computation ''' res_y = depth_refine.shape[0] res_x = depth_refine.shape[1] centerX=cx centerY=cy constant_x = 1/fx constant_y = 1/fy if(refine): depth_refine = np.nan_to_num(depth_refine) mask = np.zeros_like(depth_refine).astype(np.uint8) mask[depth_refine==0]=1 depth_refine = depth_refine.astype(np.float32) depth_refine = cv2.inpaint(depth_refine,mask,2,cv2.INPAINT_NS) depth_refine = depth_refine.astype(np.float) depth_refine = ndimage.gaussian_filter(depth_refine,2) uv_table = np.zeros((res_y,res_x,2),dtype=np.int16) column = np.arange(0,res_y) uv_table[:,:,1] = np.arange(0,res_x) - centerX #x-c_x (u) uv_table[:,:,0] = column[:,np.newaxis] - centerY #y-c_y (v) if(bbox.shape[0]==4): uv_table = uv_table[bbox[0]:bbox[2],bbox[1]:bbox[3]] v_x = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) v_y = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) normals = np.zeros((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) depth_refine=depth_refine[bbox[0]:bbox[2],bbox[1]:bbox[3]] else: v_x = np.zeros((res_y,res_x,3)) v_y = np.zeros((res_y,res_x,3)) normals = np.zeros((res_y,res_x,3)) uv_table_sign= np.copy(uv_table) uv_table=np.abs(np.copy(uv_table)) dig=np.gradient(depth_refine,2,edge_order=2) v_y[:,:,0]=uv_table_sign[:,:,1]*constant_x*dig[0] v_y[:,:,1]=depth_refine*constant_y+(uv_table_sign[:,:,0]*constant_y)*dig[0] v_y[:,:,2]=dig[0] v_x[:,:,0]=depth_refine*constant_x+uv_table_sign[:,:,1]*constant_x*dig[1] v_x[:,:,1]=uv_table_sign[:,:,0]*constant_y*dig[1] v_x[:,:,2]=dig[1] cross = np.cross(v_x.reshape(-1,3),v_y.reshape(-1,3)) norm = np.expand_dims(np.linalg.norm(cross,axis=1),axis=1) norm[norm==0]=1 cross = cross/norm if(bbox.shape[0]==4): cross =cross.reshape((bbox[2]-bbox[0],bbox[3]-bbox[1],3)) else: cross =cross.reshape(res_y,res_x,3) cross= np.nan_to_num(cross) return cross