Python cv2.INPAINT_TELEA Examples

The following are 9 code examples of cv2.INPAINT_TELEA(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: imgproc.py    From graph_distillation with Apache License 2.0 6 votes vote down vote up
def inpaint(img, threshold=1):
  h, w = img.shape[:2]

  if len(img.shape) == 3:  # RGB
    mask = np.all(img == 0, axis=2).astype(np.uint8)
    img = cv2.inpaint(img, mask, inpaintRadius=3, flags=cv2.INPAINT_TELEA)

  else:  # depth
    mask = np.where(img > threshold)
    xx, yy = np.meshgrid(np.arange(w), np.arange(h))
    xym = np.vstack((np.ravel(xx[mask]), np.ravel(yy[mask]))).T
    img = np.ravel(img[mask])
    interp = interpolate.NearestNDInterpolator(xym, img)
    img = interp(np.ravel(xx), np.ravel(yy)).reshape(xx.shape)

  return img 
Example #2
Source File: measure.py    From ambient-gan with MIT License 6 votes vote down vote up
def unmeasure_np(self, hparams, x_measured_val, theta_val):
        if hparams.unmeasure_type == 'medfilt':
            unmeasure_func = lambda image, mask: signal.medfilt(image)
        elif hparams.unmeasure_type == 'inpaint-telea':
            inpaint_type = cv2.INPAINT_TELEA
            unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
        elif hparams.unmeasure_type == 'inpaint-ns':
            inpaint_type = cv2.INPAINT_NS
            unmeasure_func = measure_utils.get_inpaint_func_opencv(hparams, inpaint_type)
        elif hparams.unmeasure_type == 'inpaint-tv':
            unmeasure_func = measure_utils.get_inpaint_func_tv()
        elif hparams.unmeasure_type == 'blur':
            unmeasure_func = measure_utils.get_blur_func()
        else:
            raise NotImplementedError

        x_unmeasured_val = np.zeros_like(x_measured_val)
        for i in range(x_measured_val.shape[0]):
            x_unmeasured_val[i] = unmeasure_func(x_measured_val[i], theta_val[i])

        return x_unmeasured_val 
Example #3
Source File: WatermarkRemover.py    From nowatermark with MIT License 6 votes vote down vote up
def remove_watermark_raw(self, img, watermark_template_gray_img, watermark_template_mask_img):
        """
        去除图片中的水印
        :param img: 待去除水印图片位图
        :param watermark_template_gray_img: 水印模板的灰度图片位图,用于确定水印位置
        :param watermark_template_mask_img: 水印模板的掩码图片位图,用于修复原始图片
        :return: 去除水印后的图片位图
        """
        # 寻找水印位置
        img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        x1, y1, x2, y2 = self.find_watermark_from_gray(img_gray, watermark_template_gray_img)

        # 制作原图的水印位置遮板
        mask = np.zeros(img.shape, np.uint8)
        # watermark_template_mask_img = cv2.cvtColor(watermark_template_gray_img, cv2.COLOR_GRAY2BGR)
        # mask[y1:y1 + self.watermark_template_h, x1:x1 + self.watermark_template_w] = watermark_template_mask_img
        mask[y1:y2, x1:x2] = watermark_template_mask_img
        mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

        # 用遮板进行图片修复,使用 TELEA 算法
        dst = cv2.inpaint(img, mask, 5, cv2.INPAINT_TELEA)
        # cv2.imwrite('dst.jpg', dst)

        return dst 
Example #4
Source File: ImageRestoration.py    From Finger-Detection-and-Tracking with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def main():
    image = cv2.imread("../data/Damaged Image.tiff", 1)
    mask_image = cv2.imread("../data/Mask.tiff", 0)

    telea_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_TELEA)
    ns_image = cv2.inpaint(image, mask_image, 5, cv2.INPAINT_NS)

    cv2.imshow("Orignal Image", image)
    cv2.imshow("Mask Image", mask_image)

    cv2.imshow("TELEA Restored Image", telea_image)
    cv2.imshow("NS Restored Image", ns_image)

    cv2.waitKey(0)
    cv2.destroyAllWindows() 
Example #5
Source File: RealWorld.py    From Monocular-Obstacle-Avoidance with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def GetDepthImageObservation(self):
		# ros image to cv2 image
		try:
			cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1")
		except Exception as e:
			raise e
		# try:
		# 	cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8")
		# except Exception as e:
		# 	raise e
		cv_img = np.array(cv_img, dtype=np.float32)

		cv_img[np.isnan(cv_img)] = 0.
		# cv_img/=(10./255.)
		cv_img/=(10000./255.)
		# print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img)
		# cv_img[cv_img > 5.] = -1.
		# cv_img[cv_img < 0.4] = 0.

		# inpainting
		mask = copy.deepcopy(cv_img)
		mask[mask == 0.] = 1.
		mask[mask != 1.] = 0.
		# print 'mask sum:', np.sum(mask)
		mask = np.uint8(mask)
		cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA)

		cv_img = np.array(cv_img, dtype=np.float32)
		# cv_img*=(10./255.)
		cv_img*=(10./255.)
		# resize
		dim = (self.depth_image_size[0], self.depth_image_size[1])
		cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA)

		# cv2 image to ros image and publish
		try:
			resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough")
		except Exception as e:
			raise e
		self.resized_depth_img.publish(resized_img)
		return(cv_img/5.) 
Example #6
Source File: image.py    From perception with Apache License 2.0 5 votes vote down vote up
def inpaint(self, win_size=3, rescale_factor=1.0):
        """ Fills in the zero pixels in the image.

        Parameters
        ----------
        win_size : int
            size of window to use for inpainting
        rescale_factor : float
            amount to rescale the image for inpainting, smaller numbers increase speed

        Returns
        -------
        :obj:`ColorImage`
            color image with zero pixels filled in
        """
        # get original shape
        orig_shape = (self.height, self.width)
        
        # resize the image
        resized_data = self.resize(rescale_factor, interp='nearest').data

        # inpaint smaller image
        mask = 1 * (np.sum(resized_data, axis=2) == 0)
        inpainted_data = cv2.inpaint(resized_data, mask.astype(np.uint8),
                                     win_size, cv2.INPAINT_TELEA)
        inpainted_im = ColorImage(inpainted_data, frame=self.frame)

        # fill in zero pixels with inpainted and resized image
        filled_data = inpainted_im.resize(
            orig_shape, interp='bilinear').data
        new_data = self.data
        new_data[self.data == 0] = filled_data[self.data == 0]
        return ColorImage(new_data, frame=self.frame) 
Example #7
Source File: utils.py    From casme with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def inpaint(mask, masked_image):
    l = []
    for i in range(mask.size(0)):
        permuted_image = permute_image(masked_image[i], mul255=True)
        m = mask[i].squeeze().byte().numpy()
        inpainted_numpy = cv2.inpaint(permuted_image, m, 3, cv2.INPAINT_TELEA) #cv2.INPAINT_NS
        l.append(transforms.ToTensor()(inpainted_numpy).unsqueeze(0))
    inpainted_tensor = torch.cat(l, 0)

    return inpainted_tensor 
Example #8
Source File: utils.py    From GLCIC-PyTorch with MIT License 4 votes vote down vote up
def poisson_blend(input, output, mask):
    """
    * inputs:
        - input (torch.Tensor, required)
                Input tensor of Completion Network, whose shape = (N, 3, H, W).
        - output (torch.Tensor, required)
                Output tensor of Completion Network, whose shape = (N, 3, H, W).
        - mask (torch.Tensor, required)
                Input mask tensor of Completion Network, whose shape = (N, 1, H, W).
    * returns:
                Output image tensor of shape (N, 3, H, W) inpainted with poisson image editing method.
    """
    input = input.clone().cpu()
    output = output.clone().cpu()
    mask = mask.clone().cpu()
    mask = torch.cat((mask, mask, mask), dim=1) # convert to 3-channel format
    num_samples = input.shape[0]
    ret = []
    for i in range(num_samples):
        dstimg = transforms.functional.to_pil_image(input[i])
        dstimg = np.array(dstimg)[:, :, [2, 1, 0]]
        srcimg = transforms.functional.to_pil_image(output[i])
        srcimg = np.array(srcimg)[:, :, [2, 1, 0]]
        msk = transforms.functional.to_pil_image(mask[i])
        msk = np.array(msk)[:, :, [2, 1, 0]]
        # compute mask's center
        xs, ys = [], []
        for j in range(msk.shape[0]):
            for k in range(msk.shape[1]):
                if msk[j, k, 0] == 255:
                    ys.append(j)
                    xs.append(k)
        xmin, xmax = min(xs), max(xs)
        ymin, ymax = min(ys), max(ys)
        center = ((xmax + xmin) // 2, (ymax + ymin) // 2)
        dstimg = cv2.inpaint(dstimg, msk[:, :, 0], 1, cv2.INPAINT_TELEA)
        out = cv2.seamlessClone(srcimg, dstimg, msk, center, cv2.NORMAL_CLONE)
        out = out[:, :, [2, 1, 0]]
        out = transforms.functional.to_tensor(out)
        out = torch.unsqueeze(out, dim=0)
        ret.append(out)
    ret = torch.cat(ret, dim=0)
    return ret 
Example #9
Source File: GazeboWorld.py    From Monocular-Obstacle-Avoidance with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def GetDepthImageObservation(self):
		# ros image to cv2 image

		try:
			cv_img = self.bridge.imgmsg_to_cv2(self.depth_image, "32FC1")
		except Exception as e:
			raise e
		try:
			cv_rgb_img = self.bridge.imgmsg_to_cv2(self.rgb_image, "bgr8")
		except Exception as e:
			raise e
		cv_img = np.array(cv_img, dtype=np.float32)
		# resize
		dim = (self.depth_image_size[0], self.depth_image_size[1])
		cv_img = cv2.resize(cv_img, dim, interpolation = cv2.INTER_AREA)

		cv_img[np.isnan(cv_img)] = 0.
		cv_img[cv_img < 0.4] = 0.
		cv_img/=(10./255.)

		# cv_img/=(10000./255.)
		# print 'max:', np.amax(cv_img), 'min:', np.amin(cv_img)
		# cv_img[cv_img > 5.] = -1.

		# # inpainting
		# mask = copy.deepcopy(cv_img)
		# mask[mask == 0.] = 1.
		# mask[mask != 1.] = 0.
		# mask = np.uint8(mask)
		# cv_img = cv2.inpaint(np.uint8(cv_img), mask, 3, cv2.INPAINT_TELEA)

		# # guassian noise
		# gauss = np.random.normal(0., 0.5, dim)
		# gauss = gauss.reshape(dim[1], dim[0])
		# cv_img = np.array(cv_img, dtype=np.float32)
		# cv_img = cv_img + gauss
		# cv_img[cv_img<0.00001] = 0.

		# # smoothing
		# kernel = np.ones((4,4),np.float32)/16
		# cv_img = cv2.filter2D(cv_img,-1,kernel)


		cv_img = np.array(cv_img, dtype=np.float32)
		cv_img*=(10./255.)

		# cv2 image to ros image and publish
		try:
			resized_img = self.bridge.cv2_to_imgmsg(cv_img, "passthrough")
		except Exception as e:
			raise e
		self.resized_depth_img.publish(resized_img)
		return(cv_img/5.)